Nuprl Lemma : bag-dickson-lemma

p:ℕ. ∀[T:Type]. (T ~ ℕ (∀A:ℕ ⟶ bag(T). ∃j:ℕ. ∃i:ℕj. sub-bag(T;A[i];A[j])))


Proof




Definitions occuring in Statement :  sub-bag: sub-bag(T;as;bs) bag: bag(T) equipollent: B int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q equipollent: B exists: x:A. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] subtype_rel: A ⊆B int_seg: {i..j-} nat: prop: so_lambda: λ2x.t[x] so_apply: x[s] so_apply: x[s1;s2] uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A deq: EqDecider(T) iff: ⇐⇒ Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rev_implies:  Q guard: {T} ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top biject: Bij(A;B;f) inject: Inj(A;B;f) squash: T true: True
Lemmas referenced :  Dickson's lemma bag-size_wf assert_wf eq_int_wf int_seg_wf bag-filter_wf nat_wf sub-bag_wf int_seg_subtype_nat false_wf exists_wf bag_wf equipollent_wf assert_of_eq_int equal_wf all_wf iff_wf sub-bag-iff int_seg_properties nat_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf bag-count-sqequal le_wf squash_wf true_wf set_wf iff_imp_equal_bool
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination hypothesisEquality sqequalRule lambdaEquality isectElimination setEquality cumulativity applyEquality functionExtensionality hypothesis setElimination rename natural_numberEquality because_Cache dependent_pairFormation independent_isectElimination independent_pairFormation functionEquality universeEquality dependent_set_memberEquality equalitySymmetry equalityTransitivity independent_functionElimination addLevel unionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll levelHypothesis hyp_replacement imageElimination impliesFunctionality imageMemberEquality baseClosed

Latex:
\mforall{}p:\mBbbN{}.  \mforall{}[T:Type].  (T  \msim{}  \mBbbN{}p  {}\mRightarrow{}  (\mforall{}A:\mBbbN{}  {}\mrightarrow{}  bag(T).  \mexists{}j:\mBbbN{}.  \mexists{}i:\mBbbN{}j.  sub-bag(T;A[i];A[j])))



Date html generated: 2016_10_25-AM-11_31_24
Last ObjectModification: 2016_07_12-AM-07_36_37

Theory : bags_2


Home Index