Nuprl Lemma : bag-dickson-lemma
∀p:ℕ. ∀[T:Type]. (T ~ ℕp 
⇒ (∀A:ℕ ⟶ bag(T). ∃j:ℕ. ∃i:ℕj. sub-bag(T;A[i];A[j])))
Proof
Definitions occuring in Statement : 
sub-bag: sub-bag(T;as;bs)
, 
bag: bag(T)
, 
equipollent: A ~ B
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
deq: EqDecider(T)
, 
iff: P 
⇐⇒ Q
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
biject: Bij(A;B;f)
, 
inject: Inj(A;B;f)
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
Dickson's lemma, 
bag-size_wf, 
assert_wf, 
eq_int_wf, 
int_seg_wf, 
bag-filter_wf, 
nat_wf, 
sub-bag_wf, 
int_seg_subtype_nat, 
false_wf, 
exists_wf, 
bag_wf, 
equipollent_wf, 
assert_of_eq_int, 
equal_wf, 
all_wf, 
iff_wf, 
sub-bag-iff, 
int_seg_properties, 
nat_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
lelt_wf, 
bag-count-sqequal, 
le_wf, 
squash_wf, 
true_wf, 
set_wf, 
iff_imp_equal_bool
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
isectElimination, 
setEquality, 
cumulativity, 
applyEquality, 
functionExtensionality, 
hypothesis, 
setElimination, 
rename, 
natural_numberEquality, 
because_Cache, 
dependent_pairFormation, 
independent_isectElimination, 
independent_pairFormation, 
functionEquality, 
universeEquality, 
dependent_set_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
independent_functionElimination, 
addLevel, 
unionElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
levelHypothesis, 
hyp_replacement, 
imageElimination, 
impliesFunctionality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}p:\mBbbN{}.  \mforall{}[T:Type].  (T  \msim{}  \mBbbN{}p  {}\mRightarrow{}  (\mforall{}A:\mBbbN{}  {}\mrightarrow{}  bag(T).  \mexists{}j:\mBbbN{}.  \mexists{}i:\mBbbN{}j.  sub-bag(T;A[i];A[j])))
Date html generated:
2016_10_25-AM-11_31_24
Last ObjectModification:
2016_07_12-AM-07_36_37
Theory : bags_2
Home
Index