Nuprl Lemma : bag-count-sqequal

[T:Type]. ∀[bs:bag(T)]. ∀[eq:EqDecider(T)]. ∀[x:T].  ((#x in bs) #([y∈bs|eq y]))


Proof




Definitions occuring in Statement :  bag-count: (#x in bs) bag-size: #(bs) bag-filter: [x∈b|p[x]] bag: bag(T) deq: EqDecider(T) uall: [x:A]. B[x] apply: a universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] squash: T exists: x:A. B[x] bag-filter: [x∈b|p[x]] bag-size: #(bs) bag-count: (#x in bs) deq: EqDecider(T) subtype_rel: A ⊆B ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q le: A ≤ B and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top prop: sq_type: SQType(T) guard: {T}
Lemmas referenced :  subtype_base_sq nat_wf set_subtype_base le_wf int_subtype_base bag_to_squash_list count-length-filter non_neg_length filter_wf5 decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf filter_functionality eta_conv bool_wf equal_wf bag-count_wf bag-size_wf assert_wf bag-filter_wf deq_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesis independent_isectElimination sqequalRule intEquality lambdaEquality natural_numberEquality hypothesisEquality because_Cache imageElimination productElimination promote_hyp rename applyEquality setElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll dependent_set_memberEquality hyp_replacement equalitySymmetry Error :applyLambdaEquality,  setEquality equalityTransitivity independent_functionElimination sqequalAxiom universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].    ((\#x  in  bs)  \msim{}  \#([y\mmember{}bs|eq  x  y]))



Date html generated: 2016_10_25-AM-11_25_17
Last ObjectModification: 2016_07_12-AM-07_29_33

Theory : bags_2


Home Index