Nuprl Lemma : sub-bag_wf
∀[T:Type]. ∀[as,bs:bag(T)]. (sub-bag(T;as;bs) ∈ ℙ)
Proof
Definitions occuring in Statement :
sub-bag: sub-bag(T;as;bs)
,
bag: bag(T)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
sub-bag: sub-bag(T;as;bs)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
exists_wf,
bag_wf,
equal_wf,
bag-append_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
lambdaEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[as,bs:bag(T)]. (sub-bag(T;as;bs) \mmember{} \mBbbP{})
Date html generated:
2016_05_15-PM-02_35_40
Last ObjectModification:
2015_12_27-AM-09_45_46
Theory : bags
Home
Index