Nuprl Lemma : sub-bag-iff
∀[T:Type]. ∀eq:EqDecider(T). ∀as,bs:bag(T).  (sub-bag(T;as;bs) 
⇐⇒ ∀x:T. ((#x in as) ≤ (#x in bs)))
Proof
Definitions occuring in Statement : 
bag-count: (#x in bs)
, 
sub-bag: sub-bag(T;as;bs)
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
sub-bag: sub-bag(T;as;bs)
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
false: False
, 
nat: ℕ
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
uiff: uiff(P;Q)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
bag-filter: [x∈b|p[x]]
, 
bag-size: #(bs)
, 
bag-map: bag-map(f;bs)
, 
bag-union: bag-union(bbs)
, 
concat: concat(ll)
, 
cons: [a / b]
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
nil: []
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
deq: EqDecider(T)
, 
istype: istype(T)
, 
eqof: eqof(d)
, 
cons-bag: x.b
, 
bnot: ¬bb
, 
assert: ↑b
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
l_all: (∀x∈L.P[x])
, 
rev_uimplies: rev_uimplies(P;Q)
, 
sq_or: a ↓∨ b
, 
sq_stable: SqStable(P)
, 
bag-member: x ↓∈ bs
Lemmas referenced : 
le_witness_for_triv, 
istype-universe, 
sub-bag_wf, 
le_wf, 
bag-count_wf, 
bag_wf, 
deq_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-int, 
bag-count-append, 
subtype_rel_self, 
iff_weakening_equal, 
decidable__le, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformnot_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
subtract_wf, 
subtract_nat_wf, 
subtract-is-int-iff, 
itermSubtract_wf, 
intformeq_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
false_wf, 
repn_wf, 
list-subtype-bag, 
nat_wf, 
bag-union_wf, 
bag-map_wf, 
bag-to-set_wf, 
set_subtype_base, 
int_subtype_base, 
member-bag-to-set, 
count-bag-to-set, 
ifthenelse_wf, 
lt_int_wf, 
bag-member_wf, 
list_wf, 
permutation_wf, 
permutation_weakening, 
bag-count-sqequal, 
intformless_wf, 
int_formula_prop_less_lemma, 
ge_wf, 
less_than_wf, 
list-cases, 
filter_nil_lemma, 
map_nil_lemma, 
length_of_nil_lemma, 
reduce_nil_lemma, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-false, 
subtract-1-ge-0, 
subtype_base_sq, 
spread_cons_lemma, 
decidable__equal_int, 
filter_cons_lemma, 
map_cons_lemma, 
length_wf, 
filter_wf5, 
l_member_wf, 
nil_wf, 
assert_wf, 
bnot_wf, 
eqof_wf, 
not_wf, 
bool_cases, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
non_neg_length, 
length_wf_nat, 
safe-assert-deq, 
length_of_cons_lemma, 
bool_cases_sqequal, 
assert-bnot, 
concat-cons, 
filter_append_sq, 
cons-bag_wf, 
append_wf, 
subtype_rel_list, 
concat_wf, 
map_wf, 
add-is-int-iff, 
filter_is_nil, 
list_ind_nil_lemma, 
int_seg_wf, 
length-repn, 
select-repn, 
append-nil, 
top_wf, 
filter_trivial, 
l_all_iff, 
strong-subtype-deq-subtype, 
strong-subtype-set2, 
bag-member-cons, 
sq_stable__bag-member, 
set_wf, 
permutation-length, 
permutation_functionality_wrt_permutation, 
filter_functionality_wrt_permutation, 
bag-append_wf, 
bag-extensionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
independent_pairFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productElimination, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
independent_isectElimination, 
hypothesisEquality, 
universeIsType, 
sqequalRule, 
functionIsType, 
applyEquality, 
because_Cache, 
inhabitedIsType, 
universeEquality, 
hyp_replacement, 
applyLambdaEquality, 
lambdaEquality_alt, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_functionElimination, 
dependent_functionElimination, 
unionElimination, 
setElimination, 
rename, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
dependent_set_memberEquality_alt, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
equalityIsType1, 
setEquality, 
setIsType, 
equalityIsType4, 
intEquality, 
equalityElimination, 
productIsType, 
isectIsType, 
pertypeElimination, 
intWeakElimination, 
axiomEquality, 
functionIsTypeImplies, 
hypothesis_subsumption, 
voidEquality, 
cumulativity, 
addEquality, 
axiomSqEquality, 
inrFormation_alt
Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}as,bs:bag(T).    (sub-bag(T;as;bs)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:T.  ((\#x  in  as)  \mleq{}  (\#x  in  bs)))
Date html generated:
2019_10_16-AM-11_32_49
Last ObjectModification:
2018_10_11-PM-10_24_35
Theory : bags_2
Home
Index