Nuprl Lemma : select-repn

[x:Top]. ∀[n:ℕ]. ∀[i:ℕn].  (repn(n;x)[i] x)


Proof




Definitions occuring in Statement :  repn: repn(n;x) select: L[n] int_seg: {i..j-} nat: uall: [x:A]. B[x] top: Top natural_number: $n sqequal: t
Definitions unfolded in proof :  repn: repn(n;x) uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf primrec0_lemma stuck-spread base_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma primrec-unroll eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int select-cons le_int_wf assert_of_le_int le_wf nat_wf top_wf decidable__lt lelt_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination sqequalAxiom baseClosed because_Cache productElimination unionElimination equalityElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity dependent_set_memberEquality

Latex:
\mforall{}[x:Top].  \mforall{}[n:\mBbbN{}].  \mforall{}[i:\mBbbN{}n].    (repn(n;x)[i]  \msim{}  x)



Date html generated: 2017_04_17-AM-07_50_00
Last ObjectModification: 2017_02_27-PM-04_23_56

Theory : list_1


Home Index