Nuprl Lemma : member-bag-to-set

[T:Type]. ∀[eq:EqDecider(T)]. ∀[bs:bag(T)]. ∀[x:T].  uiff(x ↓∈ bs;x ↓∈ bag-to-set(eq;bs))


Proof




Definitions occuring in Statement :  bag-to-set: bag-to-set(eq;bs) bag-member: x ↓∈ bs bag: bag(T) deq: EqDecider(T) uiff: uiff(P;Q) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  bag-to-set: bag-to-set(eq;bs)
Lemmas referenced :  member-bag-remove-repeats
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep hypothesis

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[bs:bag(T)].  \mforall{}[x:T].    uiff(x  \mdownarrow{}\mmember{}  bs;x  \mdownarrow{}\mmember{}  bag-to-set(eq;bs))



Date html generated: 2016_05_15-PM-08_03_06
Last ObjectModification: 2015_12_27-PM-04_15_29

Theory : bags_2


Home Index