Nuprl Lemma : length-repn

[x:Top]. ∀[n:ℕ].  (||repn(n;x)|| n)


Proof




Definitions occuring in Statement :  repn: repn(n;x) length: ||as|| nat: uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  repn: repn(n;x) uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) guard: {T} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  le: A ≤ B less_than': less_than'(a;b) bfalse: ff bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf primrec0_lemma length_of_nil_lemma decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma length_wf_nat top_wf primrec_wf list_wf le_wf nil_wf cons_wf int_seg_wf subtype_base_sq nat_wf set_subtype_base int_subtype_base primrec-unroll eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int decidable__equal_int intformeq_wf int_formula_prop_eq_lemma false_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int length_of_cons_lemma subtract-add-cancel
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination sqequalAxiom unionElimination because_Cache dependent_set_memberEquality instantiate cumulativity equalityTransitivity equalitySymmetry equalityElimination productElimination applyLambdaEquality promote_hyp

Latex:
\mforall{}[x:Top].  \mforall{}[n:\mBbbN{}].    (||repn(n;x)||  \msim{}  n)



Date html generated: 2017_04_17-AM-07_49_51
Last ObjectModification: 2017_02_27-PM-04_24_05

Theory : list_1


Home Index