Nuprl Lemma : count-bag-to-set
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[bs:bag(T)]. ∀[x:T].  ((#x in bag-to-set(eq;bs)) ~ if 0 <z (#x in bs) then 1 else 0 fi )
Proof
Definitions occuring in Statement : 
bag-to-set: bag-to-set(eq;bs)
, 
bag-count: (#x in bs)
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
ifthenelse: if b then t else f fi 
, 
lt_int: i <z j
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
bag-to-set: bag-to-set(eq;bs)
Lemmas referenced : 
count-bag-remove-repeats
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
hypothesis
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[bs:bag(T)].  \mforall{}[x:T].
    ((\#x  in  bag-to-set(eq;bs))  \msim{}  if  0  <z  (\#x  in  bs)  then  1  else  0  fi  )
Date html generated:
2016_05_15-PM-08_03_01
Last ObjectModification:
2015_12_27-PM-04_15_31
Theory : bags_2
Home
Index