Nuprl Lemma : count-bag-remove-repeats
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[bs:bag(T)]. ∀[x:T].
  ((#x in bag-remove-repeats(eq;bs)) ~ if 0 <z (#x in bs) then 1 else 0 fi )
Proof
Definitions occuring in Statement : 
bag-remove-repeats: bag-remove-repeats(eq;bs)
, 
bag-count: (#x in bs)
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
ifthenelse: if b then t else f fi 
, 
lt_int: i <z j
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
sq_type: SQType(T)
, 
guard: {T}
, 
prop: ℙ
, 
bag-filter: [x∈b|p[x]]
, 
bag-size: #(bs)
, 
bag-remove-repeats: bag-remove-repeats(eq;bs)
, 
iff: P 
⇐⇒ Q
, 
deq: EqDecider(T)
, 
istype: istype(T)
, 
rev_implies: P 
⇐ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
false: False
, 
le: A ≤ B
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
less_than': less_than'(a;b)
, 
cons: [a / b]
, 
sq_stable: SqStable(P)
, 
subtract: n - m
Lemmas referenced : 
subtype_base_sq, 
nat_wf, 
set_subtype_base, 
le_wf, 
istype-int, 
int_subtype_base, 
bag-count_wf, 
istype-universe, 
bag-remove-repeats_wf, 
quotient-member-eq, 
list_wf, 
permutation_wf, 
permutation-equiv, 
bag_wf, 
deq_wf, 
list-subtype-bag, 
deq-member-length-filter2, 
l_member-iff-length-filter, 
list-to-set_wf, 
member-list-to-set, 
length_wf, 
filter_wf5, 
subtype_rel_dep_function, 
bool_wf, 
l_member_wf, 
bag-count-sqequal, 
non_neg_length, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
filter_functionality, 
eta_conv, 
deq-member_wf, 
eqtt_to_assert, 
assert-deq-member, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
list-to-set-property, 
no-repeats-iff-count, 
decidable__equal_nat, 
length_wf_nat, 
istype-false, 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
not-le-2, 
sq_stable__le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-associates, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
intEquality, 
lambdaEquality_alt, 
closedConclusion, 
natural_numberEquality, 
hypothesisEquality, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
lambdaFormation_alt, 
rename, 
applyEquality, 
imageElimination, 
because_Cache, 
universeIsType, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
equalityIsType1, 
productIsType, 
equalityIsType4, 
axiomSqEquality, 
isect_memberEquality_alt, 
setElimination, 
setEquality, 
setIsType, 
independent_pairFormation, 
promote_hyp, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
voidElimination, 
dependent_set_memberEquality_alt, 
equalityElimination, 
hypothesis_subsumption, 
addEquality, 
minusEquality, 
functionIsType
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[bs:bag(T)].  \mforall{}[x:T].
    ((\#x  in  bag-remove-repeats(eq;bs))  \msim{}  if  0  <z  (\#x  in  bs)  then  1  else  0  fi  )
Date html generated:
2019_10_16-AM-11_30_39
Last ObjectModification:
2018_10_11-PM-11_28_59
Theory : bags_2
Home
Index