Nuprl Lemma : deq-member-length-filter2

[A:Type]. ∀[eq:EqDecider(A)]. ∀[L:A List]. ∀[x:A].  (x ∈b 0 <||filter(λy.(eq y);L)||)


Proof




Definitions occuring in Statement :  length: ||as|| deq-member: x ∈b L filter: filter(P;l) list: List deq: EqDecider(T) lt_int: i <j uall: [x:A]. B[x] apply: a lambda: λx.A[x] natural_number: $n universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T deq: EqDecider(T) iff: ⇐⇒ Q and: P ∧ Q implies:  Q rev_implies:  Q eqof: eqof(d) prop: true: True sq_type: SQType(T) all: x:A. B[x] guard: {T}
Lemmas referenced :  subtype_base_sq bool_wf bool_subtype_base deq-member-length-filter lt_int_wf length_wf filter_wf5 iff_imp_equal_bool iff_weakening_uiff assert_wf eqof_wf equal_wf safe-assert-deq istype-assert l_member_wf list_wf deq_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesis independent_isectElimination sqequalRule hypothesisEquality applyEquality lambdaEquality_alt imageElimination because_Cache natural_numberEquality functionExtensionality_alt setElimination rename independent_pairFormation lambdaFormation_alt equalitySymmetry equalityIstype inhabitedIsType productElimination independent_functionElimination promote_hyp setIsType universeIsType imageMemberEquality baseClosed dependent_functionElimination equalityTransitivity axiomSqEquality isect_memberEquality_alt isectIsTypeImplies universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[L:A  List].  \mforall{}[x:A].    (x  \mmember{}\msubb{}  L  \msim{}  0  <z  ||filter(\mlambda{}y.(eq  x  y);L)||)



Date html generated: 2020_05_19-PM-09_52_15
Last ObjectModification: 2020_01_04-PM-08_00_02

Theory : decidable!equality


Home Index