Nuprl Lemma : list-to-set_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:T List].  (list-to-set(eq;L) ∈ List)


Proof




Definitions occuring in Statement :  list-to-set: list-to-set(eq;L) list: List deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T list-to-set: list-to-set(eq;L)
Lemmas referenced :  l-union_wf nil_wf list_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:T  List].    (list-to-set(eq;L)  \mmember{}  T  List)



Date html generated: 2016_05_14-PM-03_25_37
Last ObjectModification: 2015_12_26-PM-06_22_37

Theory : decidable!equality


Home Index