Nuprl Lemma : list-to-set_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:T List].  (list-to-set(eq;L) ∈ T List)
Proof
Definitions occuring in Statement : 
list-to-set: list-to-set(eq;L)
, 
list: T List
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
list-to-set: list-to-set(eq;L)
Lemmas referenced : 
l-union_wf, 
nil_wf, 
list_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:T  List].    (list-to-set(eq;L)  \mmember{}  T  List)
Date html generated:
2016_05_14-PM-03_25_37
Last ObjectModification:
2015_12_26-PM-06_22_37
Theory : decidable!equality
Home
Index