Nuprl Lemma : no-repeats-iff-count
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:T List].
  uiff(no_repeats(T;L);∀[x:T]. uiff(1 ≤ ||filter(eq x;L)||;||filter(eq x;L)|| = 1 ∈ ℤ))
Proof
Definitions occuring in Statement : 
no_repeats: no_repeats(T;l)
, 
length: ||as||
, 
filter: filter(P;l)
, 
list: T List
, 
deq: EqDecider(T)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
apply: f a
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
deq: EqDecider(T)
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
set-equal: set-equal(T;x;y)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
l_member: (x ∈ l)
, 
nat: ℕ
, 
cand: A c∧ B
, 
ge: i ≥ j 
, 
eqof: eqof(d)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
no_repeats: no_repeats(T;l)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
guard: {T}
, 
length: ||as||
, 
list_ind: list_ind, 
cons: [a / b]
, 
nil: []
, 
it: ⋅
Lemmas referenced : 
le_wf, 
length_wf, 
filter_wf5, 
subtype_rel_dep_function, 
bool_wf, 
l_member_wf, 
subtype_rel_self, 
set_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
less_than'_wf, 
equal-wf-T-base, 
no_repeats_wf, 
no_repeats_witness, 
uall_wf, 
uiff_wf, 
list_wf, 
deq_wf, 
set-equal-no_repeats-length, 
cons_wf, 
select_wf, 
false_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
nil_wf, 
no_repeats_singleton, 
no_repeats_filter, 
length_of_cons_lemma, 
length_of_nil_lemma, 
member_singleton, 
member_filter, 
iff_wf, 
equal_wf, 
assert_wf, 
less_than_wf, 
nat_properties, 
safe-assert-deq, 
select_member, 
lelt_wf, 
not_wf, 
nat_wf, 
sublist_filter, 
l_all_cons, 
assert_functionality_wrt_uiff, 
l_all_nil, 
length_sublist, 
sublist_pair, 
decidable__equal_int, 
equal-wf-base, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
setElimination, 
rename, 
sqequalRule, 
lambdaEquality, 
setEquality, 
independent_isectElimination, 
because_Cache, 
lambdaFormation, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
baseClosed, 
independent_functionElimination, 
universeEquality, 
addLevel, 
impliesFunctionality, 
productEquality, 
dependent_set_memberEquality, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:T  List].
    uiff(no\_repeats(T;L);\mforall{}[x:T].  uiff(1  \mleq{}  ||filter(eq  x;L)||;||filter(eq  x;L)||  =  1))
Date html generated:
2017_09_29-PM-06_04_09
Last ObjectModification:
2017_07_26-PM-02_53_02
Theory : decidable!equality
Home
Index