Nuprl Lemma : decidable__cand
∀[P:ℙ]. ∀[Q:⋂x:P. ℙ].  (Dec(P) 
⇒ (P 
⇒ Dec(Q)) 
⇒ Dec(P c∧ Q))
Proof
Definitions occuring in Statement : 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
cand: A c∧ B
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
isect: ⋂x:A. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
decidable__and2, 
decidable_wf, 
isect_subtype_rel_trivial, 
subtype_rel_weakening, 
ext-eq_weakening, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
because_Cache, 
functionEquality, 
applyEquality, 
instantiate, 
cumulativity, 
universeEquality, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
dependent_pairFormation, 
isectIsType, 
universeIsType, 
inhabitedIsType
Latex:
\mforall{}[P:\mBbbP{}].  \mforall{}[Q:\mcap{}x:P.  \mBbbP{}].    (Dec(P)  {}\mRightarrow{}  (P  {}\mRightarrow{}  Dec(Q))  {}\mRightarrow{}  Dec(P  c\mwedge{}  Q))
Date html generated:
2019_10_15-AM-10_47_01
Last ObjectModification:
2018_09_27-AM-09_35_29
Theory : basic
Home
Index