Nuprl Lemma : decidable__cand

[P:ℙ]. ∀[Q:⋂x:P. ℙ].  (Dec(P)  (P  Dec(Q))  Dec(P c∧ Q))


Proof




Definitions occuring in Statement :  decidable: Dec(P) uall: [x:A]. B[x] cand: c∧ B prop: implies:  Q isect: x:A. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T prop: cand: c∧ B and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a exists: x:A. B[x]
Lemmas referenced :  decidable__and2 decidable_wf isect_subtype_rel_trivial subtype_rel_weakening ext-eq_weakening subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis because_Cache functionEquality applyEquality instantiate cumulativity universeEquality sqequalRule lambdaEquality independent_isectElimination dependent_pairFormation isectIsType universeIsType inhabitedIsType

Latex:
\mforall{}[P:\mBbbP{}].  \mforall{}[Q:\mcap{}x:P.  \mBbbP{}].    (Dec(P)  {}\mRightarrow{}  (P  {}\mRightarrow{}  Dec(Q))  {}\mRightarrow{}  Dec(P  c\mwedge{}  Q))



Date html generated: 2019_10_15-AM-10_47_01
Last ObjectModification: 2018_09_27-AM-09_35_29

Theory : basic


Home Index