Nuprl Lemma : decidable__equal_equipollent

[T:Type]. ∀k:ℕ(T ~ ℕ (∀a,b:T.  Dec(a b ∈ T)))


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} nat: decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q equipollent: B exists: x:A. B[x] member: t ∈ T nat: decidable: Dec(P) or: P ∨ Q prop: not: ¬A false: False and: P ∧ Q guard: {T} biject: Bij(A;B;f) inject: Inj(A;B;f)
Lemmas referenced :  decidable__equal_int_seg not_wf equal_wf and_wf equipollent_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination natural_numberEquality setElimination rename because_Cache hypothesis applyEquality functionExtensionality hypothesisEquality cumulativity unionElimination inlFormation isectElimination inrFormation independent_functionElimination equalitySymmetry dependent_set_memberEquality independent_pairFormation applyLambdaEquality voidElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}k:\mBbbN{}.  (T  \msim{}  \mBbbN{}k  {}\mRightarrow{}  (\mforall{}a,b:T.    Dec(a  =  b)))



Date html generated: 2017_09_29-PM-06_04_48
Last ObjectModification: 2017_07_05-PM-06_15_15

Theory : equipollence!!cardinality!


Home Index