Nuprl Lemma : sub-bag-admissable
∀[T:Type]. ∀[R:bag(T) ⟶ bag(T) ⟶ ℙ].
  (bag-admissable(T;as,bs.R[as;bs]) 
⇒ (∀as,bs:bag(T).  (sub-bag(T;as;bs) 
⇒ R[as;bs])))
Proof
Definitions occuring in Statement : 
bag-admissable: bag-admissable(T;as,bs.R[as; bs])
, 
sub-bag: sub-bag(T;as;bs)
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
sub-bag: sub-bag(T;as;bs)
, 
exists: ∃x:A. B[x]
, 
bag-admissable: bag-admissable(T;as,bs.R[as; bs])
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
guard: {T}
, 
top: Top
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
equal_wf, 
bag_wf, 
sub-bag_wf, 
bag-admissable_wf, 
empty-bag_wf, 
bag-empty-append, 
squash_wf, 
true_wf, 
bag-append-comm, 
bag-append_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
hypothesis, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
equalityTransitivity, 
applyEquality, 
functionExtensionality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R:bag(T)  {}\mrightarrow{}  bag(T)  {}\mrightarrow{}  \mBbbP{}].
    (bag-admissable(T;as,bs.R[as;bs])  {}\mRightarrow{}  (\mforall{}as,bs:bag(T).    (sub-bag(T;as;bs)  {}\mRightarrow{}  R[as;bs])))
Date html generated:
2017_10_01-AM-09_05_09
Last ObjectModification:
2017_07_26-PM-04_45_06
Theory : bags
Home
Index