Nuprl Lemma : bag-empty-append
∀[as:Top]. ({} + as ~ as)
Proof
Definitions occuring in Statement : 
bag-append: as + bs
, 
empty-bag: {}
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
empty_bag_append_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalTransitivity, 
computationStep, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
sqequalAxiom
Latex:
\mforall{}[as:Top].  (\{\}  +  as  \msim{}  as)
Date html generated:
2016_05_15-PM-02_22_27
Last ObjectModification:
2015_12_27-AM-09_54_50
Theory : bags
Home
Index