Step
*
1
2
of Lemma
bag-moebius-property1
1. T : Type
2. valueall-type(T)
3. eq : EqDecider(T)
4. b : T List
5. ¬(b = {} ∈ bag(T))
⊢ Σ(c∈sub-bags(eq;b)). bag-moebius(eq;c) = 0 ∈ ℤ
BY
{ (InstLemma `bag-summation-split` 
   [⌜bag(T)⌝;⌜ℤ⌝;⌜λx,y. (x + y)⌝;⌜0⌝;⌜sub-bags(eq;b)⌝;⌜λ2b.bag-has-no-repeats(eq;b)⌝]⋅
   THENA Auto
   ) }
1
1. T : Type
2. valueall-type(T)
3. eq : EqDecider(T)
4. b : T List
5. ¬(b = {} ∈ bag(T))
6. ∀[f:bag(T) ⟶ ℤ]
     Σ(x∈sub-bags(eq;b)). f[x]
     = (Σ(x∈[x∈sub-bags(eq;b)|bag-has-no-repeats(eq;x)]). f[x] 
        (λx,y. (x + y)) 
        Σ(x∈[x∈sub-bags(eq;b)|¬bbag-has-no-repeats(eq;x)]). f[x])
     ∈ ℤ 
     supposing IsMonoid(ℤ;λx,y. (x + y);0) ∧ Comm(ℤ;λx,y. (x + y))
⊢ Σ(c∈sub-bags(eq;b)). bag-moebius(eq;c) = 0 ∈ ℤ
Latex:
Latex:
1.  T  :  Type
2.  valueall-type(T)
3.  eq  :  EqDecider(T)
4.  b  :  T  List
5.  \mneg{}(b  =  \{\})
\mvdash{}  \mSigma{}(c\mmember{}sub-bags(eq;b)).  bag-moebius(eq;c)  =  0
By
Latex:
(InstLemma  `bag-summation-split` 
  [\mkleeneopen{}bag(T)\mkleeneclose{};\mkleeneopen{}\mBbbZ{}\mkleeneclose{};\mkleeneopen{}\mlambda{}x,y.  (x  +  y)\mkleeneclose{};\mkleeneopen{}0\mkleeneclose{};\mkleeneopen{}sub-bags(eq;b)\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}b.bag-has-no-repeats(eq;b)\mkleeneclose{}]\mcdot{}
  THENA  Auto
  )
Home
Index