Step * 1 2 of Lemma bag-moebius-property1


1. Type
2. valueall-type(T)
3. eq EqDecider(T)
4. List
5. ¬(b {} ∈ bag(T))
⊢ Σ(c∈sub-bags(eq;b)). bag-moebius(eq;c) 0 ∈ ℤ
BY
(InstLemma `bag-summation-split` 
   [⌜bag(T)⌝;⌜ℤ⌝;⌜λx,y. (x y)⌝;⌜0⌝;⌜sub-bags(eq;b)⌝;⌜λ2b.bag-has-no-repeats(eq;b)⌝]⋅
   THENA Auto
   }

1
1. Type
2. valueall-type(T)
3. eq EqDecider(T)
4. List
5. ¬(b {} ∈ bag(T))
6. ∀[f:bag(T) ⟶ ℤ]
     Σ(x∈sub-bags(eq;b)). f[x]
     (x∈[x∈sub-bags(eq;b)|bag-has-no-repeats(eq;x)]). f[x] 
        x,y. (x y)) 
        Σ(x∈[x∈sub-bags(eq;b)|¬bbag-has-no-repeats(eq;x)]). f[x])
     ∈ ℤ 
     supposing IsMonoid(ℤx,y. (x y);0) ∧ Comm(ℤx,y. (x y))
⊢ Σ(c∈sub-bags(eq;b)). bag-moebius(eq;c) 0 ∈ ℤ


Latex:


Latex:

1.  T  :  Type
2.  valueall-type(T)
3.  eq  :  EqDecider(T)
4.  b  :  T  List
5.  \mneg{}(b  =  \{\})
\mvdash{}  \mSigma{}(c\mmember{}sub-bags(eq;b)).  bag-moebius(eq;c)  =  0


By


Latex:
(InstLemma  `bag-summation-split` 
  [\mkleeneopen{}bag(T)\mkleeneclose{};\mkleeneopen{}\mBbbZ{}\mkleeneclose{};\mkleeneopen{}\mlambda{}x,y.  (x  +  y)\mkleeneclose{};\mkleeneopen{}0\mkleeneclose{};\mkleeneopen{}sub-bags(eq;b)\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}b.bag-has-no-repeats(eq;b)\mkleeneclose{}]\mcdot{}
  THENA  Auto
  )




Home Index