Step
*
2
of Lemma
bag-ordering-wellfounded
1. p : ℕ@i
2. [T] : Type
3. T ~ ℕp@i
4. [R] : bag(T) ⟶ bag(T) ⟶ ℙ
5. Trans(bag(T);a,b.R[a;b])@i
6. ∀a,b:bag(T). Dec(R[a;b])@i
7. ∀a,b:bag(T). (sub-bag(T;a;b)
⇒ (¬R[b;a]))@i
⊢ no-descending-chain(bag(T);R)
BY
{ (D 0 THEN Auto) }
1
1. p : ℕ@i
2. [T] : Type
3. T ~ ℕp@i
4. [R] : bag(T) ⟶ bag(T) ⟶ ℙ
5. Trans(bag(T);a,b.R[a;b])@i
6. ∀a,b:bag(T). Dec(R[a;b])@i
7. ∀a,b:bag(T). (sub-bag(T;a;b)
⇒ (¬R[b;a]))@i
8. f : ℕ ⟶ bag(T)@i
⊢ ∃j:ℕ. ∃i:ℕj. (¬((f j) R (f i)))
Latex:
Latex:
1. p : \mBbbN{}@i
2. [T] : Type
3. T \msim{} \mBbbN{}p@i
4. [R] : bag(T) {}\mrightarrow{} bag(T) {}\mrightarrow{} \mBbbP{}
5. Trans(bag(T);a,b.R[a;b])@i
6. \mforall{}a,b:bag(T). Dec(R[a;b])@i
7. \mforall{}a,b:bag(T). (sub-bag(T;a;b) {}\mRightarrow{} (\mneg{}R[b;a]))@i
\mvdash{} no-descending-chain(bag(T);R)
By
Latex:
(D 0 THEN Auto)
Home
Index