Step
*
1
1
2
of Lemma
bag-remove1_wf
1. T : Type
2. eq : EqDecider(T)
3. x : T
4. as : T List
5. bs : T List
6. permutation(T;as;bs)
7. ∀a:T. ((a ∈ as)
⇐⇒ (a ∈ bs))
8. (x ∈ as)
⇒ (x ∈ bs)
9. (x ∈ as)
⇐ (x ∈ bs)
10. as@0 : T List
11. b1 : T List
12. as = ((as@0 @ [x]) @ b1) ∈ (T List)
13. bag-remove1(eq;as;x) = (inl (rev(as@0) @ b1)) ∈ (T List?)
14. a1 : T List
15. bs@0 : T List
16. bs = ((a1 @ [x]) @ bs@0) ∈ (T List)
17. bag-remove1(eq;bs;x) = (inl (rev(a1) @ bs@0)) ∈ (T List?)
18. z : T List?
⊢ (inl (rev(as@0) + b1)) = z ∈ (bag(T)?) ∈ ℙ
BY
{ xxxAutoxxx }
Latex:
Latex:
1. T : Type
2. eq : EqDecider(T)
3. x : T
4. as : T List
5. bs : T List
6. permutation(T;as;bs)
7. \mforall{}a:T. ((a \mmember{} as) \mLeftarrow{}{}\mRightarrow{} (a \mmember{} bs))
8. (x \mmember{} as) {}\mRightarrow{} (x \mmember{} bs)
9. (x \mmember{} as) \mLeftarrow{}{} (x \mmember{} bs)
10. as@0 : T List
11. b1 : T List
12. as = ((as@0 @ [x]) @ b1)
13. bag-remove1(eq;as;x) = (inl (rev(as@0) @ b1))
14. a1 : T List
15. bs@0 : T List
16. bs = ((a1 @ [x]) @ bs@0)
17. bag-remove1(eq;bs;x) = (inl (rev(a1) @ bs@0))
18. z : T List?
\mvdash{} (inl (rev(as@0) + b1)) = z \mmember{} \mBbbP{}
By
Latex:
xxxAutoxxx
Home
Index