Nuprl Lemma : bag-remove1_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[bs:bag(T)].  (bag-remove1(eq;bs;x) ∈ bag(T)?)


Proof




Definitions occuring in Statement :  bag-remove1: bag-remove1(eq;bs;a) bag: bag(T) deq: EqDecider(T) uall: [x:A]. B[x] unit: Unit member: t ∈ T union: left right universe: Type
Definitions unfolded in proof :  bag: bag(T) member: t ∈ T uall: [x:A]. B[x] quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q prop: guard: {T} or: P ∨ Q exists: x:A. B[x] iff: ⇐⇒ Q bag-append: as bs subtype_rel: A ⊆B uimplies: supposing a true: True so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] squash: T rev_implies:  Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] not: ¬A false: False
Lemmas referenced :  bag_wf unit_wf2 list_wf permutation_wf equal_wf equal-wf-base deq_wf member-permutation bag-remove1-property1 subtype_rel_union list-subtype-bag quotient-member-eq permutation-equiv append_wf squash_wf true_wf bag-append_wf reverse-bag iff_weakening_equal permutation_transitivity permutation_weakening cons_wf nil_wf permutation_functionality_wrt_permutation append_functionality_wrt_permutation permutation-rotate list_ind_cons_lemma list_ind_nil_lemma cons_cancel_wrt_permutation reverse_wf length_wf_nat nat_wf member_append cons_member l_member_wf bag-remove1_wf1
Rules used in proof :  sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity pointwiseFunctionalityForEquality unionEquality cut introduction extract_by_obid isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule pertypeElimination productElimination equalityTransitivity equalitySymmetry lambdaFormation because_Cache rename dependent_functionElimination independent_functionElimination productEquality universeEquality isect_memberFormation axiomEquality isect_memberEquality unionElimination hyp_replacement applyLambdaEquality applyEquality independent_isectElimination lambdaEquality natural_numberEquality inlEquality imageElimination imageMemberEquality baseClosed voidElimination voidEquality dependent_set_memberEquality inlFormation inrFormation setElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[bs:bag(T)].    (bag-remove1(eq;bs;x)  \mmember{}  bag(T)?)



Date html generated: 2018_05_21-PM-09_48_11
Last ObjectModification: 2017_07_26-PM-06_30_34

Theory : bags_2


Home Index