Nuprl Lemma : reverse-bag
∀[T:Type]. ∀[b:bag(T)].  (rev(b) = b ∈ bag(T))
Proof
Definitions occuring in Statement : 
bag: bag(T)
, 
reverse: rev(as)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
guard: {T}
Lemmas referenced : 
list_wf, 
quotient-member-eq, 
permutation_wf, 
permutation-equiv, 
reverse_wf, 
equal_wf, 
equal-wf-base, 
bag_wf, 
permutation-reverse, 
permutation_inversion, 
permutation_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
because_Cache, 
sqequalRule, 
pertypeElimination, 
productElimination, 
thin, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
lambdaFormation, 
rename, 
lambdaEquality, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
productEquality, 
isect_memberEquality, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].    (rev(b)  =  b)
Date html generated:
2017_10_01-AM-08_44_58
Last ObjectModification:
2017_07_26-PM-04_30_27
Theory : bags
Home
Index