Nuprl Lemma : reverse-bag

[T:Type]. ∀[b:bag(T)].  (rev(b) b ∈ bag(T))


Proof




Definitions occuring in Statement :  bag: bag(T) reverse: rev(as) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag: bag(T) quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a prop: guard: {T}
Lemmas referenced :  list_wf quotient-member-eq permutation_wf permutation-equiv reverse_wf equal_wf equal-wf-base bag_wf permutation-reverse permutation_inversion permutation_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality because_Cache sqequalRule pertypeElimination productElimination thin equalityTransitivity hypothesis equalitySymmetry extract_by_obid isectElimination cumulativity hypothesisEquality lambdaFormation rename lambdaEquality independent_isectElimination dependent_functionElimination independent_functionElimination productEquality isect_memberEquality axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].    (rev(b)  =  b)



Date html generated: 2017_10_01-AM-08_44_58
Last ObjectModification: 2017_07_26-PM-04_30_27

Theory : bags


Home Index