Step * 1 2 1 2 1 of Lemma bag-subtract-member-if-no-repeats

.....assertion..... 
1. Type
2. eq EqDecider(T)
3. T
4. T
5. List
6. ∀bs:bag(T). (bag-no-repeats(T;bs)  uiff(x ↓∈ bag-subtract(eq;bs;v);x ↓∈ bs ∧ x ↓∈ v)))
7. bs bag(T)
8. bag-no-repeats(T;bs)
9. x ↓∈ bag-drop(eq;bs;u) ∧ x ↓∈ v) supposing x ↓∈ bag-subtract(eq;bag-drop(eq;bs;u);v)
10. x ↓∈ bag-subtract(eq;bag-drop(eq;bs;u);v) supposing x ↓∈ bag-drop(eq;bs;u) ∧ x ↓∈ v)
11. x ↓∈ bag-drop(eq;bs;u)
12. u ∈ T
13. bs ({u} bag-drop(eq;bs;u)) ∈ bag(T)
⊢ False
BY
((HypSubst (-1) (-6) THENA Auto)
   THEN (RWO "bag-no-repeats-append" (-6) THENA Auto)
   THEN RepD
   THEN InstHyp [⌜x⌝(-6)⋅
   THEN Auto) }


Latex:


Latex:
.....assertion..... 
1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  x  :  T
4.  u  :  T
5.  v  :  T  List
6.  \mforall{}bs:bag(T).  (bag-no-repeats(T;bs)  {}\mRightarrow{}  uiff(x  \mdownarrow{}\mmember{}  bag-subtract(eq;bs;v);x  \mdownarrow{}\mmember{}  bs  \mwedge{}  (\mneg{}x  \mdownarrow{}\mmember{}  v)))
7.  bs  :  bag(T)
8.  bag-no-repeats(T;bs)
9.  x  \mdownarrow{}\mmember{}  bag-drop(eq;bs;u)  \mwedge{}  (\mneg{}x  \mdownarrow{}\mmember{}  v)  supposing  x  \mdownarrow{}\mmember{}  bag-subtract(eq;bag-drop(eq;bs;u);v)
10.  x  \mdownarrow{}\mmember{}  bag-subtract(eq;bag-drop(eq;bs;u);v)  supposing  x  \mdownarrow{}\mmember{}  bag-drop(eq;bs;u)  \mwedge{}  (\mneg{}x  \mdownarrow{}\mmember{}  v)
11.  x  \mdownarrow{}\mmember{}  bag-drop(eq;bs;u)
12.  x  =  u
13.  bs  =  (\{u\}  +  bag-drop(eq;bs;u))
\mvdash{}  False


By


Latex:
((HypSubst  (-1)  (-6)  THENA  Auto)
  THEN  (RWO  "bag-no-repeats-append"  (-6)  THENA  Auto)
  THEN  RepD
  THEN  InstHyp  [\mkleeneopen{}x\mkleeneclose{}]  (-6)\mcdot{}
  THEN  Auto)




Home Index