Step * 1 2 1 3 1 of Lemma bag-subtract-member-if-no-repeats


1. Type
2. eq EqDecider(T)
3. T
4. T
5. List
6. ∀bs:bag(T). (bag-no-repeats(T;bs)  uiff(x ↓∈ bag-subtract(eq;bs;v);x ↓∈ bs ∧ x ↓∈ v)))
7. bs bag(T)
8. bag-no-repeats(T;bs)
9. x ↓∈ bag-drop(eq;bs;u) ∧ x ↓∈ v) supposing x ↓∈ bag-subtract(eq;bag-drop(eq;bs;u);v)
10. x ↓∈ bag-subtract(eq;bag-drop(eq;bs;u);v) supposing x ↓∈ bag-drop(eq;bs;u) ∧ x ↓∈ v)
11. x ↓∈ bs
12. ¬((x u ∈ T) ↓∨ x ↓∈ v)
13. bs ({u} bag-drop(eq;bs;u)) ∈ bag(T)
⊢ x ↓∈ bag-drop(eq;bs;u)
BY
((HypSubst (-1) (-3) THENA Auto)
   THEN BagMemberD (-3)
   THEN (-3)
   THEN (Unhide THENA Auto)
   THEN (-3)
   THEN Auto
   THEN BagMemberD (-3)
   THEN (-2)
   THEN 0
   THEN Auto) }


Latex:


Latex:

1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  x  :  T
4.  u  :  T
5.  v  :  T  List
6.  \mforall{}bs:bag(T).  (bag-no-repeats(T;bs)  {}\mRightarrow{}  uiff(x  \mdownarrow{}\mmember{}  bag-subtract(eq;bs;v);x  \mdownarrow{}\mmember{}  bs  \mwedge{}  (\mneg{}x  \mdownarrow{}\mmember{}  v)))
7.  bs  :  bag(T)
8.  bag-no-repeats(T;bs)
9.  x  \mdownarrow{}\mmember{}  bag-drop(eq;bs;u)  \mwedge{}  (\mneg{}x  \mdownarrow{}\mmember{}  v)  supposing  x  \mdownarrow{}\mmember{}  bag-subtract(eq;bag-drop(eq;bs;u);v)
10.  x  \mdownarrow{}\mmember{}  bag-subtract(eq;bag-drop(eq;bs;u);v)  supposing  x  \mdownarrow{}\mmember{}  bag-drop(eq;bs;u)  \mwedge{}  (\mneg{}x  \mdownarrow{}\mmember{}  v)
11.  x  \mdownarrow{}\mmember{}  bs
12.  \mneg{}((x  =  u)  \mdownarrow{}\mvee{}  x  \mdownarrow{}\mmember{}  v)
13.  bs  =  (\{u\}  +  bag-drop(eq;bs;u))
\mvdash{}  x  \mdownarrow{}\mmember{}  bag-drop(eq;bs;u)


By


Latex:
((HypSubst  (-1)  (-3)  THENA  Auto)
  THEN  BagMemberD  (-3)
  THEN  D  (-3)
  THEN  (Unhide  THENA  Auto)
  THEN  D  (-3)
  THEN  Auto
  THEN  BagMemberD  (-3)
  THEN  D  (-2)
  THEN  D  0
  THEN  Auto)




Home Index