Step
*
of Lemma
bag-summation-partitions-primes
∀[h:ℕ+ ⟶ ℕ+ ⟶ ℤ]. ∀[b:bag(Prime)].
(Σ(p∈bag-partitions(IntDeq;b)). h[Π(fst(p));Π(snd(p))] = Σ i|Π(b). h[i;Π(b) ÷ i] ∈ ℤ)
BY
{ xxx(Auto
THEN (InstLemma `bag-summation-partitions-primes-general` [⌜ℤ-rng⌝;⌜h⌝;⌜b⌝]⋅ THENA Auto)
THEN Reduce (-1)
THEN HypSubst' (-1) 0
THEN RepUR ``let`` 0
THEN Auto)xxx }
Latex:
Latex:
\mforall{}[h:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}]. \mforall{}[b:bag(Prime)].
(\mSigma{}(p\mmember{}bag-partitions(IntDeq;b)). h[\mPi{}(fst(p));\mPi{}(snd(p))] = \mSigma{} i|\mPi{}(b). h[i;\mPi{}(b) \mdiv{} i] )
By
Latex:
xxx(Auto
THEN (InstLemma `bag-summation-partitions-primes-general` [\mkleeneopen{}\mBbbZ{}-rng\mkleeneclose{};\mkleeneopen{}h\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{}]\mcdot{} THENA Auto)
THEN Reduce (-1)
THEN HypSubst' (-1) 0
THEN RepUR ``let`` 0
THEN Auto)xxx
Home
Index