Nuprl Lemma : bag-summation-partitions-primes

[h:ℕ+ ⟶ ℕ+ ⟶ ℤ]. ∀[b:bag(Prime)].
  (p∈bag-partitions(IntDeq;b)). h[Π(fst(p));Π(snd(p))] = Σ i|Π(b). h[i;Π(b) ÷ i]  ∈ ℤ)


Proof




Definitions occuring in Statement :  bag-partitions: bag-partitions(eq;bs) divisors-sum: Σ i|n. f[i]  Prime: Prime int-bag-product: Π(b) bag-summation: Σ(x∈b). f[x] bag: bag(T) int-deq: IntDeq nat_plus: + uall: [x:A]. B[x] so_apply: x[s1;s2] pi1: fst(t) pi2: snd(t) lambda: λx.A[x] function: x:A ⟶ B[x] divide: n ÷ m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B integ_dom: IntegDom{i} int_ring: -rng rng_car: |r| pi1: fst(t) rng_zero: 0 pi2: snd(t) rng_plus: +r uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} let: let squash: T prop: nat_plus: + Prime: Prime int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s1;s2] int_seg: {i..j-} decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) true: True nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top subtract: m so_apply: x[s]
Lemmas referenced :  bag-summation-partitions-primes-general int_ring_wf integ_dom_wf nat_plus_wf subtype_base_sq int_subtype_base equal_wf squash_wf true_wf gen-divisors-sum-int-ring int-bag-product_wf subtype_rel_bag Prime_wf bag-product-primes less_than_wf decidable__lt false_wf not-lt-2 add_functionality_wrt_le add-zero le-add-cancel int_seg_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf equal-wf-base div-positive-1 less-iff-le condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-commutes zero-add le-add-cancel2 int_seg_wf divisors-sum_wf iff_weakening_equal bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis applyEquality lambdaEquality setElimination rename hypothesisEquality sqequalRule functionExtensionality functionEquality intEquality instantiate cumulativity independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination imageElimination universeEquality dependent_set_memberEquality because_Cache natural_numberEquality unionElimination independent_pairFormation lambdaFormation voidElimination productElimination divideEquality addEquality dependent_pairFormation int_eqEquality isect_memberEquality voidEquality computeAll baseClosed minusEquality imageMemberEquality axiomEquality

Latex:
\mforall{}[h:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[b:bag(Prime)].
    (\mSigma{}(p\mmember{}bag-partitions(IntDeq;b)).  h[\mPi{}(fst(p));\mPi{}(snd(p))]  =  \mSigma{}  i|\mPi{}(b).  h[i;\mPi{}(b)  \mdiv{}  i]  )



Date html generated: 2018_05_21-PM-09_50_28
Last ObjectModification: 2017_07_26-PM-06_31_21

Theory : bags_2


Home Index