Nuprl Lemma : bag-summation-partitions-primes-general
∀[r:CRng]. ∀[h:ℕ+ ⟶ ℕ+ ⟶ |r|]. ∀[b:bag(Prime)].
  (Σ(p∈bag-partitions(IntDeq;b)). h[Π(fst(p));Π(snd(p))] = let n = Π(b) in Σ i|n. h[i;n ÷ i] ∈ |r|)
Proof
Definitions occuring in Statement : 
bag-partitions: bag-partitions(eq;bs)
, 
gen-divisors-sum: Σ i|n. f[i]
, 
Prime: Prime
, 
int-bag-product: Π(b)
, 
bag-summation: Σ(x∈b). f[x]
, 
bag: bag(T)
, 
int-deq: IntDeq
, 
nat_plus: ℕ+
, 
let: let, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
function: x:A ⟶ B[x]
, 
divide: n ÷ m
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_zero: 0
, 
rng_plus: +r
, 
rng_car: |r|
Definitions unfolded in proof : 
gen-divisors-sum: Σ i|n. f[i]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
Prime: Prime
, 
so_lambda: λ2x.t[x]
, 
int_upper: {i...}
, 
so_apply: x[s]
, 
let: let, 
crng: CRng
, 
rng: Rng
, 
top: Top
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
prop: ℙ
, 
mapfilter: mapfilter(f;P;L)
, 
bag-filter: [x∈b|p[x]]
, 
bag-map: bag-map(f;bs)
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
implies: P 
⇒ Q
, 
nat_plus: ℕ+
, 
nequal: a ≠ b ∈ T 
, 
guard: {T}
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
cand: A c∧ B
, 
bag-member: x ↓∈ bs
, 
squash: ↓T
, 
inject: Inj(A;B;f)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
sq_stable: SqStable(P)
, 
less_than: a < b
, 
divides: b | a
, 
nat: ℕ
, 
int_nzero: ℤ-o
, 
sq_type: SQType(T)
, 
l_member: (x ∈ l)
, 
ge: i ≥ j 
, 
subtract: n - m
, 
so_apply: x[s1;s2]
, 
monoid_p: IsMonoid(T;op;id)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
int-deq_wf, 
strong-subtype-deq-subtype, 
Prime_wf, 
strong-subtype-set3, 
int_upper_wf, 
prime_wf, 
le_wf, 
strong-subtype-self, 
bag_wf, 
nat_plus_wf, 
rng_car_wf, 
crng_wf, 
bag-summation-map, 
bag-partitions_wf, 
set-valueall-type, 
int-valueall-type, 
bag-product-primes, 
from-upto_wf, 
int-bag-product_wf, 
list-subtype-bag, 
less_than_wf, 
subtype_rel_bag, 
int_seg_wf, 
bag-extensionality-no-repeats, 
decidable__equal_product, 
decidable__equal_nat_plus, 
bag-map_wf, 
pi1_wf_top, 
pi2_wf, 
assert_wf, 
eq_int_wf, 
int_seg_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
decidable__lt, 
false_wf, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
div-positive-1, 
bag-filter_wf, 
bag-member_wf, 
bag-map-no-repeats, 
equal_wf, 
prime-product-injection, 
no-repeats-bag-partitions, 
assert_of_eq_int, 
equal-wf-T-base, 
and_wf, 
subtype_rel_product, 
top_wf, 
nat_plus_properties, 
sq_stable__assert, 
intformless_wf, 
int_formula_prop_less_lemma, 
iff_weakening_equal, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
itermAdd_wf, 
int_term_value_add_lemma, 
lelt_wf, 
set_wf, 
bag-no-repeats-subtype, 
strong-subtype-set2, 
bag-no-repeats-filter, 
bag-no-repeats-list, 
list_wf, 
no_repeats-subtype, 
no_repeats_from-upto, 
bag-member-map, 
sq_stable__bag-member, 
bag-member-partitions, 
squash_wf, 
true_wf, 
int-bag-product-append, 
divisors_bound, 
divides_iff_rem_zero, 
nequal_wf, 
subtype_base_sq, 
product_subtype_base, 
set_subtype_base, 
bag-member-filter-set, 
bag-member-list, 
decidable__equal_int_seg, 
from-upto-member, 
nat_properties, 
decidable__equal_int, 
length_wf, 
select_wf, 
divide-exact, 
subtype_rel_set, 
int_nzero_wf, 
subtype_rel_sets, 
less_than_transitivity1, 
le_weakening, 
factors_wf, 
div_rem_sum2, 
append-factors, 
minus-zero, 
add-zero, 
factors-prime-product, 
product-factors, 
int_nzero_properties, 
bag-subtype-list, 
bag-summation-filter, 
rng_plus_wf, 
rng_zero_wf, 
rng_all_properties, 
rng_plus_comm2, 
bag-summation_wf, 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
less-iff-le, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
le-add-cancel2
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
hypothesis, 
applyEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
independent_isectElimination, 
natural_numberEquality, 
lambdaEquality, 
setElimination, 
rename, 
hypothesisEquality, 
because_Cache, 
isect_memberEquality, 
axiomEquality, 
functionEquality, 
voidElimination, 
voidEquality, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
dependent_functionElimination, 
addEquality, 
setEquality, 
productEquality, 
independent_functionElimination, 
lambdaFormation, 
independent_pairEquality, 
dependent_set_memberEquality, 
productElimination, 
remainderEquality, 
dependent_pairFormation, 
int_eqEquality, 
independent_pairFormation, 
computeAll, 
baseClosed, 
unionElimination, 
divideEquality, 
equalityTransitivity, 
imageElimination, 
imageMemberEquality, 
addLevel, 
levelHypothesis, 
universeEquality, 
multiplyEquality, 
instantiate, 
cumulativity, 
functionExtensionality, 
equalityElimination, 
promote_hyp, 
minusEquality
Latex:
\mforall{}[r:CRng].  \mforall{}[h:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbN{}\msupplus{}  {}\mrightarrow{}  |r|].  \mforall{}[b:bag(Prime)].
    (\mSigma{}(p\mmember{}bag-partitions(IntDeq;b)).  h[\mPi{}(fst(p));\mPi{}(snd(p))]  =  let  n  =  \mPi{}(b)  in  \mSigma{}  i|n.  h[i;n  \mdiv{}  i])
Date html generated:
2018_05_21-PM-09_50_25
Last ObjectModification:
2017_07_26-PM-06_31_19
Theory : bags_2
Home
Index