Nuprl Lemma : bag-summation-partitions-primes-general

[r:CRng]. ∀[h:ℕ+ ⟶ ℕ+ ⟶ |r|]. ∀[b:bag(Prime)].
  (p∈bag-partitions(IntDeq;b)). h[Π(fst(p));Π(snd(p))] let = Π(b) in Σ i|n. h[i;n ÷ i] ∈ |r|)


Proof




Definitions occuring in Statement :  bag-partitions: bag-partitions(eq;bs) gen-divisors-sum: Σ i|n. f[i] Prime: Prime int-bag-product: Π(b) bag-summation: Σ(x∈b). f[x] bag: bag(T) int-deq: IntDeq nat_plus: + let: let uall: [x:A]. B[x] so_apply: x[s1;s2] pi1: fst(t) pi2: snd(t) function: x:A ⟶ B[x] divide: n ÷ m equal: t ∈ T crng: CRng rng_zero: 0 rng_plus: +r rng_car: |r|
Definitions unfolded in proof :  gen-divisors-sum: Σ i|n. f[i] uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a Prime: Prime so_lambda: λ2x.t[x] int_upper: {i...} so_apply: x[s] let: let crng: CRng rng: Rng top: Top pi1: fst(t) pi2: snd(t) prop: mapfilter: mapfilter(f;P;L) bag-filter: [x∈b|p[x]] bag-map: bag-map(f;bs) all: x:A. B[x] and: P ∧ Q int_seg: {i..j-} lelt: i ≤ j < k implies:  Q nat_plus: + nequal: a ≠ b ∈  guard: {T} not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) le: A ≤ B less_than': less_than'(a;b) true: True cand: c∧ B bag-member: x ↓∈ bs squash: T inject: Inj(A;B;f) rev_uimplies: rev_uimplies(P;Q) sq_stable: SqStable(P) less_than: a < b divides: a nat: int_nzero: -o sq_type: SQType(T) l_member: (x ∈ l) ge: i ≥  subtract: m so_apply: x[s1;s2] monoid_p: IsMonoid(T;op;id) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b
Lemmas referenced :  int-deq_wf strong-subtype-deq-subtype Prime_wf strong-subtype-set3 int_upper_wf prime_wf le_wf strong-subtype-self bag_wf nat_plus_wf rng_car_wf crng_wf bag-summation-map bag-partitions_wf set-valueall-type int-valueall-type bag-product-primes from-upto_wf int-bag-product_wf list-subtype-bag less_than_wf subtype_rel_bag int_seg_wf bag-extensionality-no-repeats decidable__equal_product decidable__equal_nat_plus bag-map_wf pi1_wf_top pi2_wf assert_wf eq_int_wf int_seg_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf equal-wf-base int_subtype_base decidable__lt false_wf not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel div-positive-1 bag-filter_wf bag-member_wf bag-map-no-repeats equal_wf prime-product-injection no-repeats-bag-partitions assert_of_eq_int equal-wf-T-base and_wf subtype_rel_product top_wf nat_plus_properties sq_stable__assert intformless_wf int_formula_prop_less_lemma iff_weakening_equal decidable__le intformnot_wf int_formula_prop_not_lemma itermAdd_wf int_term_value_add_lemma lelt_wf set_wf bag-no-repeats-subtype strong-subtype-set2 bag-no-repeats-filter bag-no-repeats-list list_wf no_repeats-subtype no_repeats_from-upto bag-member-map sq_stable__bag-member bag-member-partitions squash_wf true_wf int-bag-product-append divisors_bound divides_iff_rem_zero nequal_wf subtype_base_sq product_subtype_base set_subtype_base bag-member-filter-set bag-member-list decidable__equal_int_seg from-upto-member nat_properties decidable__equal_int length_wf select_wf divide-exact subtype_rel_set int_nzero_wf subtype_rel_sets less_than_transitivity1 le_weakening factors_wf div_rem_sum2 append-factors minus-zero add-zero factors-prime-product product-factors int_nzero_properties bag-subtype-list bag-summation-filter rng_plus_wf rng_zero_wf rng_all_properties rng_plus_comm2 bag-summation_wf bool_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int less-iff-le condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top le-add-cancel2
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid hypothesis applyEquality sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination natural_numberEquality lambdaEquality setElimination rename hypothesisEquality because_Cache isect_memberEquality axiomEquality functionEquality voidElimination voidEquality hyp_replacement equalitySymmetry applyLambdaEquality dependent_functionElimination addEquality setEquality productEquality independent_functionElimination lambdaFormation independent_pairEquality dependent_set_memberEquality productElimination remainderEquality dependent_pairFormation int_eqEquality independent_pairFormation computeAll baseClosed unionElimination divideEquality equalityTransitivity imageElimination imageMemberEquality addLevel levelHypothesis universeEquality multiplyEquality instantiate cumulativity functionExtensionality equalityElimination promote_hyp minusEquality

Latex:
\mforall{}[r:CRng].  \mforall{}[h:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbN{}\msupplus{}  {}\mrightarrow{}  |r|].  \mforall{}[b:bag(Prime)].
    (\mSigma{}(p\mmember{}bag-partitions(IntDeq;b)).  h[\mPi{}(fst(p));\mPi{}(snd(p))]  =  let  n  =  \mPi{}(b)  in  \mSigma{}  i|n.  h[i;n  \mdiv{}  i])



Date html generated: 2018_05_21-PM-09_50_25
Last ObjectModification: 2017_07_26-PM-06_31_19

Theory : bags_2


Home Index