Nuprl Lemma : product-factors

[n:ℕ+]. (factors(n)) n ∈ ℤ)


Proof




Definitions occuring in Statement :  factors: factors(n) int-bag-product: Π(b) nat_plus: + uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] factors: factors(n) empty-bag: {} member: t ∈ T squash: T prop: all: x:A. B[x] nat_plus: + implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False int_upper: {i...} nequal: a ≠ b ∈  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A top: Top subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf mul-list-bag-product eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int nil_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int factorization_wf nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf subtype_rel_set list_wf int_upper_wf prime_wf mul-list_wf subtype_rel_list iff_weakening_equal mul_list_nil_lemma nat_plus_wf set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality intEquality dependent_functionElimination setElimination rename because_Cache natural_numberEquality lambdaFormation unionElimination equalityElimination sqequalRule productElimination independent_isectElimination dependent_pairFormation promote_hyp instantiate cumulativity independent_functionElimination voidElimination dependent_set_memberEquality int_eqEquality isect_memberEquality voidEquality independent_pairFormation computeAll setEquality imageMemberEquality baseClosed

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  (\mPi{}(factors(n))  =  n)



Date html generated: 2018_05_21-PM-06_58_17
Last ObjectModification: 2017_07_26-PM-05_00_19

Theory : general


Home Index