Nuprl Lemma : product-factors
∀[n:ℕ+]. (Π(factors(n)) = n ∈ ℤ)
Proof
Definitions occuring in Statement : 
factors: factors(n), 
int-bag-product: Π(b), 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
factors: factors(n), 
empty-bag: {}, 
member: t ∈ T, 
squash: ↓T, 
prop: ℙ, 
all: ∀x:A. B[x], 
nat_plus: ℕ+, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
int_upper: {i...}, 
nequal: a ≠ b ∈ T , 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
top: Top, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
mul-list-bag-product, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
nil_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
factorization_wf, 
nat_plus_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
subtype_rel_set, 
list_wf, 
int_upper_wf, 
prime_wf, 
mul-list_wf, 
subtype_rel_list, 
iff_weakening_equal, 
mul_list_nil_lemma, 
nat_plus_wf, 
set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
intEquality, 
dependent_functionElimination, 
setElimination, 
rename, 
because_Cache, 
natural_numberEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
sqequalRule, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
dependent_set_memberEquality, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
setEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  (\mPi{}(factors(n))  =  n)
Date html generated:
2018_05_21-PM-06_58_17
Last ObjectModification:
2017_07_26-PM-05_00_19
Theory : general
Home
Index