Nuprl Lemma : factorization_wf

n:{2...}. (factorization(n) ∈ {factors:{m:{2...}| prime(m)}  List| = Π(factors)  ∈ ℤ)


Proof




Definitions occuring in Statement :  factorization: factorization(n) mul-list: Π(ns)  prime: prime(a) list: List int_upper: {i...} all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T factorization: factorization(n) subtype_rel: A ⊆B uall: [x:A]. B[x] int_upper: {i...} prop: so_lambda: λ2x.t[x] uimplies: supposing a so_apply: x[s] sq_exists: x:A [B[x]]
Lemmas referenced :  prime-factors subtype_rel_self int_upper_wf sq_exists_wf list_wf prime_wf equal_wf mul-list_wf subtype_rel_list
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule applyEquality thin instantiate extract_by_obid hypothesis introduction sqequalHypSubstitution isectElimination functionEquality natural_numberEquality setEquality setElimination rename because_Cache lambdaEquality intEquality hypothesisEquality independent_isectElimination

Latex:
\mforall{}n:\{2...\}.  (factorization(n)  \mmember{}  \{factors:\{m:\{2...\}|  prime(m)\}    List|  n  =  \mPi{}(factors)  \}  )



Date html generated: 2018_05_21-PM-06_57_56
Last ObjectModification: 2018_05_19-PM-04_41_30

Theory : general


Home Index