Nuprl Lemma : mul-list_wf

[ns:ℤ List]. (ns)  ∈ ℤ)


Proof




Definitions occuring in Statement :  mul-list: Π(ns)  list: List uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mul-list: Π(ns) 
Lemmas referenced :  reduce_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality lambdaEquality multiplyEquality hypothesisEquality natural_numberEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[ns:\mBbbZ{}  List].  (\mPi{}(ns)    \mmember{}  \mBbbZ{})



Date html generated: 2016_05_15-PM-04_01_38
Last ObjectModification: 2015_12_27-PM-03_05_08

Theory : general


Home Index