Nuprl Lemma : mul-list_wf
∀[ns:ℤ List]. (Π(ns)  ∈ ℤ)
Proof
Definitions occuring in Statement : 
mul-list: Π(ns) 
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mul-list: Π(ns) 
Lemmas referenced : 
reduce_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
lambdaEquality, 
multiplyEquality, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[ns:\mBbbZ{}  List].  (\mPi{}(ns)    \mmember{}  \mBbbZ{})
Date html generated:
2016_05_15-PM-04_01_38
Last ObjectModification:
2015_12_27-PM-03_05_08
Theory : general
Home
Index