Nuprl Lemma : prime-factors
∀n:{2...}. (∃factors:{m:{2...}| prime(m)}  List [(n = Π(factors)  ∈ ℤ)])
Proof
Definitions occuring in Statement : 
mul-list: Π(ns) 
, 
prime: prime(a)
, 
list: T List
, 
int_upper: {i...}
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
sq_exists: ∃x:A [B[x]]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
cand: A c∧ B
, 
prime: prime(a)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
int_upper: {i...}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
sq_type: SQType(T)
, 
mul-list: Π(ns) 
Lemmas referenced : 
factorit_wf, 
le_wf, 
false_wf, 
int_upper_wf, 
nil_wf, 
nat_wf, 
prime_wf, 
less_than_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
nat_properties, 
int_upper_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
decidable__le, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
set_wf, 
all_wf, 
l_member_wf, 
subtype_rel_list, 
not_wf, 
divides_wf, 
assoced_weakening, 
reduce_nil_lemma, 
list_wf, 
equal_wf, 
reduce_wf, 
mul-list_wf, 
subtype_rel_list_set, 
itermMultiply_wf, 
int_term_value_mul_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
hypothesis, 
hypothesisEquality, 
independent_isectElimination, 
applyEquality, 
setEquality, 
productEquality, 
setElimination, 
rename, 
productElimination, 
independent_functionElimination, 
instantiate, 
cumulativity, 
intEquality, 
lambdaEquality, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
multiplyEquality
Latex:
\mforall{}n:\{2...\}.  (\mexists{}factors:\{m:\{2...\}|  prime(m)\}    List  [(n  =  \mPi{}(factors)  )])
Date html generated:
2018_05_21-PM-06_57_49
Last ObjectModification:
2017_07_26-PM-05_00_01
Theory : general
Home
Index