Nuprl Lemma : prime-factors

n:{2...}. (∃factors:{m:{2...}| prime(m)}  List [(n = Π(factors)  ∈ ℤ)])


Proof




Definitions occuring in Statement :  mul-list: Π(ns)  prime: prime(a) list: List int_upper: {i...} all: x:A. B[x] sq_exists: x:A [B[x]] set: {x:A| B[x]}  natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  sq_exists: x:A [B[x]] all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: uimplies: supposing a subtype_rel: A ⊆B cand: c∧ B prime: prime(a) so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} int_upper: {i...} ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top sq_type: SQType(T) mul-list: Π(ns) 
Lemmas referenced :  factorit_wf le_wf false_wf int_upper_wf nil_wf nat_wf prime_wf less_than_wf subtype_base_sq set_subtype_base int_subtype_base nat_properties int_upper_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_le_lemma int_formula_prop_wf decidable__le null_nil_lemma btrue_wf member-implies-null-eq-bfalse btrue_neq_bfalse set_wf all_wf l_member_wf subtype_rel_list not_wf divides_wf assoced_weakening reduce_nil_lemma list_wf equal_wf reduce_wf mul-list_wf subtype_rel_list_set itermMultiply_wf int_term_value_mul_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_set_memberEquality natural_numberEquality independent_pairFormation hypothesis hypothesisEquality independent_isectElimination applyEquality setEquality productEquality setElimination rename productElimination independent_functionElimination instantiate cumulativity intEquality lambdaEquality dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll equalityTransitivity equalitySymmetry functionEquality multiplyEquality

Latex:
\mforall{}n:\{2...\}.  (\mexists{}factors:\{m:\{2...\}|  prime(m)\}    List  [(n  =  \mPi{}(factors)  )])



Date html generated: 2018_05_21-PM-06_57_49
Last ObjectModification: 2017_07_26-PM-05_00_01

Theory : general


Home Index