Nuprl Lemma : factorit_wf
∀[x:ℕ+]. ∀[b:ℕ].
  ∀[tried:{L:{p:ℕ| prime(p) ∧ p < b}  List| ∀p:{p:ℕ| prime(p)} . (p < b 
⇒ ((p ∈ L) ∧ (¬(p | x))))} ].
  ∀[facs:{p:ℕ| prime(p)}  List].
    (factorit(x;b;tried;facs) ∈ {L:{p:ℕ| prime(p)}  List| reduce(λp,q. (p * q);1;L) = (x * reduce(λp,q. (p * q);1;facs))\000C ∈ ℤ} ) 
  supposing 2 ≤ b
Proof
Definitions occuring in Statement : 
factorit: factorit(x;b;tried;facs)
, 
prime: prime(a)
, 
divides: b | a
, 
l_member: (x ∈ l)
, 
reduce: reduce(f;k;as)
, 
list: T List
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
lambda: λx.A[x]
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
factorit: factorit(x;b;tried;facs)
, 
nat_plus: ℕ+
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
lt_int: i <z j
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
cons: [a / b]
, 
nequal: a ≠ b ∈ T 
, 
prime: prime(a)
, 
int_nzero: ℤ-o
, 
iff: P 
⇐⇒ Q
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
has-value: (a)↓
, 
l_exists: (∃x∈L. P[x])
, 
less_than: a < b
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
cand: A c∧ B
, 
l_member: (x ∈ l)
, 
list: T List
, 
divides: b | a
, 
true: True
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
select: L[n]
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
int_seg_properties, 
int_seg_wf, 
subtract-1-ge-0, 
decidable__equal_int, 
subtract_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
decidable__le, 
decidable__lt, 
istype-le, 
subtype_rel_self, 
list_wf, 
nat_wf, 
prime_wf, 
less_than_wf, 
l_member_wf, 
subtype_rel_list, 
divides_wf, 
nat_plus_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-nat, 
lt_int_wf, 
equal-wf-base, 
bool_wf, 
le_wf, 
assert_wf, 
le_int_wf, 
bnot_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
nat_plus_properties, 
reduce_wf, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
list_subtype_base, 
cons_wf, 
nat_plus_subtype_nat, 
primality-test, 
mul_preserves_le, 
bl-exists_wf, 
eq_int_wf, 
remainder_wfa, 
nequal_wf, 
assert-bl-exists, 
l_exists_functionality, 
and_wf, 
iff_weakening_uiff, 
assert_of_eq_int, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
l_exists_wf, 
value-type-has-value, 
int-value-type, 
prime_elim, 
select_wf, 
divides_iff_rem_zero, 
int_nzero_wf, 
length_wf, 
sq_stable__all, 
assoced_wf, 
false_wf, 
sq_stable_from_decidable, 
decidable__false, 
assoced_nelim, 
l_exists_iff, 
div_rem_sum, 
not_wf, 
istype-assert, 
iff_transitivity, 
assert_of_bnot, 
divide_wfa, 
div_bounds_1, 
mul_preserves_lt, 
add-is-int-iff, 
multiply-is-int-iff, 
divides_transitivity, 
reduce_cons_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
iff_weakening_equal, 
subtype_rel_list_set, 
istype-false, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
less-iff-le, 
add_functionality_wrt_le, 
add-associates, 
le-add-cancel, 
length_of_cons_lemma, 
add_nat_plus, 
length_wf_nat, 
cons_member, 
all_wf, 
set_wf, 
satisfiable-full-omega-tt
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
thin, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsTypeImplies, 
productElimination, 
because_Cache, 
unionElimination, 
applyEquality, 
instantiate, 
applyLambdaEquality, 
dependent_set_memberEquality_alt, 
productIsType, 
hypothesis_subsumption, 
setEquality, 
setIsType, 
productEquality, 
functionIsType, 
intEquality, 
multiplyEquality, 
addEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
equalityElimination, 
equalityIstype, 
cumulativity, 
sqequalBase, 
promote_hyp, 
callbyvalueReduce, 
hyp_replacement, 
imageElimination, 
unionEquality, 
unionIsType, 
imageMemberEquality, 
pointwiseFunctionality, 
universeEquality, 
minusEquality, 
inrFormation_alt, 
functionEquality, 
lambdaFormation, 
lambdaEquality, 
isect_memberEquality, 
isect_memberFormation, 
computeAll, 
voidEquality, 
dependent_pairFormation, 
dependent_set_memberEquality
Latex:
\mforall{}[x:\mBbbN{}\msupplus{}].  \mforall{}[b:\mBbbN{}].
    \mforall{}[tried:\{L:\{p:\mBbbN{}|  prime(p)  \mwedge{}  p  <  b\}    List|  \mforall{}p:\{p:\mBbbN{}|  prime(p)\}  .  (p  <  b  {}\mRightarrow{}  ((p  \mmember{}  L)  \mwedge{}  (\mneg{}(p  |  x))))\}  \000C].
    \mforall{}[facs:\{p:\mBbbN{}|  prime(p)\}    List].
        (factorit(x;b;tried;facs)  \mmember{}  \{L:\{p:\mBbbN{}|  prime(p)\}    List| 
                                                                  reduce(\mlambda{}p,q.  (p  *  q);1;L)  =  (x  *  reduce(\mlambda{}p,q.  (p  *  q);1;facs))\}  ) 
    supposing  2  \mleq{}  b
Date html generated:
2019_10_15-AM-11_10_14
Last ObjectModification:
2019_06_25-PM-01_22_53
Theory : general
Home
Index