Nuprl Lemma : factorit_wf

[x:ℕ+]. ∀[b:ℕ].
  ∀[tried:{L:{p:ℕprime(p) ∧ p < b}  List| ∀p:{p:ℕprime(p)} (p <  ((p ∈ L) ∧ (p x))))} ].
  ∀[facs:{p:ℕprime(p)}  List].
    (factorit(x;b;tried;facs) ∈ {L:{p:ℕprime(p)}  List| reduce(λp,q. (p q);1;L) (x reduce(λp,q. (p q);1;facs))\000C ∈ ℤ
  supposing 2 ≤ b


Proof




Definitions occuring in Statement :  factorit: factorit(x;b;tried;facs) prime: prime(a) divides: a l_member: (x ∈ l) reduce: reduce(f;k;as) list: List nat_plus: + nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  lambda: λx.A[x] multiply: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) factorit: factorit(x;b;tried;facs) nat_plus: + bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff lt_int: i <j reduce: reduce(f;k;as) list_ind: list_ind cons: [a b] nequal: a ≠ b ∈  prime: prime(a) int_nzero: -o iff: ⇐⇒ Q bnot: ¬bb assert: b rev_implies:  Q has-value: (a)↓ l_exists: (∃x∈L. P[x]) less_than: a < b squash: T sq_stable: SqStable(P) cand: c∧ B l_member: (x ∈ l) list: List divides: a true: True subtract: m less_than': less_than'(a;b) select: L[n]
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than int_seg_properties int_seg_wf subtract-1-ge-0 decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le subtype_rel_self list_wf nat_wf prime_wf less_than_wf l_member_wf subtype_rel_list divides_wf nat_plus_wf itermAdd_wf int_term_value_add_lemma istype-nat lt_int_wf equal-wf-base bool_wf le_wf assert_wf le_int_wf bnot_wf uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int nat_plus_properties reduce_wf itermMultiply_wf int_term_value_mul_lemma list_subtype_base cons_wf nat_plus_subtype_nat primality-test mul_preserves_le bl-exists_wf eq_int_wf remainder_wfa nequal_wf assert-bl-exists l_exists_functionality and_wf iff_weakening_uiff assert_of_eq_int bool_cases_sqequal bool_subtype_base assert-bnot l_exists_wf value-type-has-value int-value-type prime_elim select_wf divides_iff_rem_zero int_nzero_wf length_wf sq_stable__all assoced_wf false_wf sq_stable_from_decidable decidable__false assoced_nelim l_exists_iff div_rem_sum not_wf istype-assert iff_transitivity assert_of_bnot divide_wfa div_bounds_1 mul_preserves_lt add-is-int-iff multiply-is-int-iff divides_transitivity reduce_cons_lemma equal_wf squash_wf true_wf istype-universe iff_weakening_equal subtype_rel_list_set istype-false not-lt-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-commutes less-iff-le add_functionality_wrt_le add-associates le-add-cancel length_of_cons_lemma add_nat_plus length_wf_nat cons_member all_wf set_wf satisfiable-full-omega-tt
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction thin lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination independent_pairFormation universeIsType axiomEquality equalityTransitivity equalitySymmetry isectIsTypeImplies inhabitedIsType functionIsTypeImplies productElimination because_Cache unionElimination applyEquality instantiate applyLambdaEquality dependent_set_memberEquality_alt productIsType hypothesis_subsumption setEquality setIsType productEquality functionIsType intEquality multiplyEquality addEquality baseApply closedConclusion baseClosed equalityElimination equalityIstype cumulativity sqequalBase promote_hyp callbyvalueReduce hyp_replacement imageElimination unionEquality unionIsType imageMemberEquality pointwiseFunctionality universeEquality minusEquality inrFormation_alt functionEquality lambdaFormation lambdaEquality isect_memberEquality isect_memberFormation computeAll voidEquality dependent_pairFormation dependent_set_memberEquality

Latex:
\mforall{}[x:\mBbbN{}\msupplus{}].  \mforall{}[b:\mBbbN{}].
    \mforall{}[tried:\{L:\{p:\mBbbN{}|  prime(p)  \mwedge{}  p  <  b\}    List|  \mforall{}p:\{p:\mBbbN{}|  prime(p)\}  .  (p  <  b  {}\mRightarrow{}  ((p  \mmember{}  L)  \mwedge{}  (\mneg{}(p  |  x))))\}  \000C].
    \mforall{}[facs:\{p:\mBbbN{}|  prime(p)\}    List].
        (factorit(x;b;tried;facs)  \mmember{}  \{L:\{p:\mBbbN{}|  prime(p)\}    List| 
                                                                  reduce(\mlambda{}p,q.  (p  *  q);1;L)  =  (x  *  reduce(\mlambda{}p,q.  (p  *  q);1;facs))\}  ) 
    supposing  2  \mleq{}  b



Date html generated: 2019_10_15-AM-11_10_14
Last ObjectModification: 2019_06_25-PM-01_22_53

Theory : general


Home Index