Nuprl Lemma : primality-test

b:ℕ(prime(b)) supposing ((∀p:ℕ(prime(p)  ((p p) ≤ b)  (p b)))) and (2 ≤ b))


Proof




Definitions occuring in Statement :  prime: prime(a) divides: a nat: uimplies: supposing a le: A ≤ B all: x:A. B[x] not: ¬A implies:  Q multiply: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) nat: so_lambda: λ2x.t[x] so_apply: x[s] ge: i ≥  atomic: atomic(a) cand: c∧ B iff: ⇐⇒ Q reducible: reducible(a) int_nzero: -o rev_implies:  Q sq_type: SQType(T) nequal: a ≠ b ∈  nat_plus: + uiff: uiff(P;Q) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff divides: a true: True
Lemmas referenced :  int_seg_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf decidable__equal_int subtract_wf int_seg_subtype false_wf decidable__le intformnot_wf itermSubtract_wf intformeq_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_formula_prop_eq_lemma le_wf less_than'_wf divides_wf prime_wf nat_wf all_wf not_wf isect_wf decidable__lt lelt_wf set_wf less_than_wf primrec-wf2 nat_properties itermAdd_wf int_term_value_add_lemma atomic_imp_prime equal-wf-T-base assoced_nelim assoced_wf reducible_wf absval_assoced assoced_inversion absval_wf assoced_transitivity subtype_base_sq int_subtype_base int_nzero_properties absval_ifthenelse equal_wf exists_wf lt_int_wf bool_wf assert_wf le_int_wf bnot_wf itermMinus_wf int_term_value_minus_lemma mul_preserves_lt itermMultiply_wf int_term_value_mul_lemma absval_nat_plus multiply-is-int-iff uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int decidable__equal_int_seg divides_transitivity int_seg_subtype_nat not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel mul_preserves_le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination natural_numberEquality because_Cache hypothesisEquality hypothesis setElimination rename productElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll unionElimination addLevel applyEquality equalityTransitivity equalitySymmetry applyLambdaEquality levelHypothesis hypothesis_subsumption dependent_set_memberEquality isect_memberFormation independent_pairEquality axiomEquality multiplyEquality functionEquality addEquality baseClosed impliesFunctionality independent_functionElimination promote_hyp instantiate cumulativity minusEquality pointwiseFunctionality baseApply closedConclusion equalityElimination

Latex:
\mforall{}b:\mBbbN{}.  (prime(b))  supposing  ((\mforall{}p:\mBbbN{}.  (prime(p)  {}\mRightarrow{}  ((p  *  p)  \mleq{}  b)  {}\mRightarrow{}  (\mneg{}(p  |  b))))  and  (2  \mleq{}  b))



Date html generated: 2018_05_21-PM-06_55_18
Last ObjectModification: 2017_07_26-PM-04_59_22

Theory : general


Home Index