Nuprl Lemma : reducible_wf
∀[a:ℤ]. (reducible(a) ∈ ℙ)
Proof
Definitions occuring in Statement : 
reducible: reducible(a)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
reducible: reducible(a)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
int_nzero: ℤ-o
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
int_nzero_wf, 
not_wf, 
assoced_wf, 
equal-wf-base-T, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
productEquality, 
setElimination, 
rename, 
hypothesisEquality, 
natural_numberEquality, 
intEquality, 
applyEquality, 
multiplyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType
Latex:
\mforall{}[a:\mBbbZ{}].  (reducible(a)  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-PM-02_22_42
Last ObjectModification:
2018_09_26-PM-05_49_08
Theory : num_thy_1
Home
Index