Nuprl Lemma : reducible_wf

[a:ℤ]. (reducible(a) ∈ ℙ)


Proof




Definitions occuring in Statement :  reducible: reducible(a) uall: [x:A]. B[x] prop: member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T reducible: reducible(a) so_lambda: λ2x.t[x] prop: and: P ∧ Q int_nzero: -o subtype_rel: A ⊆B so_apply: x[s]
Lemmas referenced :  exists_wf int_nzero_wf not_wf assoced_wf equal-wf-base-T int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality productEquality setElimination rename hypothesisEquality natural_numberEquality intEquality applyEquality multiplyEquality axiomEquality equalityTransitivity equalitySymmetry Error :universeIsType

Latex:
\mforall{}[a:\mBbbZ{}].  (reducible(a)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-02_22_42
Last ObjectModification: 2018_09_26-PM-05_49_08

Theory : num_thy_1


Home Index