Nuprl Lemma : atomic_imp_prime

a:ℤprime(a) supposing atomic(a)


Proof




Definitions occuring in Statement :  prime: prime(a) atomic: atomic(a) uimplies: supposing a all: x:A. B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T atomic: atomic(a) and: P ∧ Q not: ¬A implies:  Q false: False subtype_rel: A ⊆B uall: [x:A]. B[x] prop: iff: ⇐⇒ Q guard: {T} prime: prime(a) or: P ∨ Q rev_implies:  Q gcd_p: GCD(a;b;y) coprime: CoPrime(a,b) cand: c∧ B assoced: b
Lemmas referenced :  int_subtype_base assoced_wf reducible_wf atomic_char atomic_wf istype-int divides_wf gcd_wf gcd_is_divisor_1 coprime_prod coprime_elim_a divides_reflexivity gcd_is_divisor_2 divides_functionality_wrt_assoced assoced_inversion assoced_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  cut introduction sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality Error :lambdaEquality_alt,  dependent_functionElimination hypothesisEquality voidElimination Error :equalityIsType4,  Error :inhabitedIsType,  applyEquality extract_by_obid hypothesis natural_numberEquality Error :universeIsType,  isectElimination rename independent_functionElimination independent_pairFormation multiplyEquality because_Cache unionElimination Error :inlFormation_alt,  independent_isectElimination Error :inrFormation_alt

Latex:
\mforall{}a:\mBbbZ{}.  prime(a)  supposing  atomic(a)



Date html generated: 2019_06_20-PM-02_23_56
Last ObjectModification: 2018_10_03-AM-00_12_48

Theory : num_thy_1


Home Index