Nuprl Lemma : coprime_elim_a

a,b:ℤ.  (CoPrime(a,b) ⇐⇒ gcd(a;b) 1)


Proof




Definitions occuring in Statement :  coprime: CoPrime(a,b) assoced: b gcd: gcd(a;b) all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q prop: uall: [x:A]. B[x] coprime: CoPrime(a,b) iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uimplies: supposing a
Lemmas referenced :  istype-int gcd_wf gcd_sat_pred gcd_p_wf assoced_wf gcd_unique gcd_p_functionality_wrt_assoced assoced_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :inhabitedIsType,  hypothesisEquality cut introduction extract_by_obid hypothesis sqequalHypSubstitution dependent_functionElimination thin equalitySymmetry hyp_replacement applyLambdaEquality isectElimination independent_pairFormation Error :universeIsType,  natural_numberEquality Error :equalityIsType1,  equalityTransitivity independent_functionElimination because_Cache independent_isectElimination productElimination

Latex:
\mforall{}a,b:\mBbbZ{}.    (CoPrime(a,b)  \mLeftarrow{}{}\mRightarrow{}  gcd(a;b)  \msim{}  1)



Date html generated: 2019_06_20-PM-02_23_27
Last ObjectModification: 2018_10_03-AM-00_12_39

Theory : num_thy_1


Home Index