Nuprl Lemma : gcd_p_wf

[a,b,y:ℤ].  (GCD(a;b;y) ∈ ℙ)


Proof




Definitions occuring in Statement :  gcd_p: GCD(a;b;y) uall: [x:A]. B[x] prop: member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T gcd_p: GCD(a;b;y) prop: and: P ∧ Q so_lambda: λ2x.t[x] implies:  Q so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  divides_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule productEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis intEquality lambdaEquality functionEquality axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  isect_memberEquality because_Cache Error :universeIsType

Latex:
\mforall{}[a,b,y:\mBbbZ{}].    (GCD(a;b;y)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-02_21_20
Last ObjectModification: 2018_09_26-PM-05_49_04

Theory : num_thy_1


Home Index