Nuprl Lemma : gcd_p_functionality_wrt_assoced
∀a,a',b,b',y,y':ℤ.  ((a ~ a') ⇒ (b ~ b') ⇒ (y ~ y') ⇒ (GCD(a;b;y) ⇐⇒ GCD(a';b';y')))
Proof
Definitions occuring in Statement : 
gcd_p: GCD(a;b;y), 
assoced: a ~ b, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
int: ℤ
Definitions unfolded in proof : 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
gcd_p: GCD(a;b;y), 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
cand: A c∧ B, 
rev_implies: P ⇐ Q, 
uimplies: b supposing a
Lemmas referenced : 
istype-int, 
assoced_wf, 
divides_wf, 
divides_functionality_wrt_assoced, 
assoced_weakening
Rules used in proof : 
Error :inhabitedIsType, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
Error :universeIsType, 
Error :lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_pairFormation, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination, 
sqequalRule, 
Error :productIsType, 
Error :functionIsType, 
because_Cache, 
promote_hyp, 
independent_isectElimination
Latex:
\mforall{}a,a',b,b',y,y':\mBbbZ{}.    ((a  \msim{}  a')  {}\mRightarrow{}  (b  \msim{}  b')  {}\mRightarrow{}  (y  \msim{}  y')  {}\mRightarrow{}  (GCD(a;b;y)  \mLeftarrow{}{}\mRightarrow{}  GCD(a';b';y')))
Date html generated:
2019_06_20-PM-02_21_24
Last ObjectModification:
2019_01_11-PM-04_06_37
Theory : num_thy_1
Home
Index