Nuprl Lemma : gcd_p_functionality_wrt_assoced

a,a',b,b',y,y':ℤ.  ((a a')  (b b')  (y y')  (GCD(a;b;y) ⇐⇒ GCD(a';b';y')))


Proof




Definitions occuring in Statement :  gcd_p: GCD(a;b;y) assoced: b all: x:A. B[x] iff: ⇐⇒ Q implies:  Q int:
Definitions unfolded in proof :  prop: uall: [x:A]. B[x] member: t ∈ T gcd_p: GCD(a;b;y) implies:  Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q cand: c∧ B rev_implies:  Q uimplies: supposing a
Lemmas referenced :  istype-int assoced_wf divides_wf divides_functionality_wrt_assoced assoced_weakening
Rules used in proof :  Error :inhabitedIsType,  hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut Error :universeIsType,  Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_pairFormation productElimination dependent_functionElimination independent_functionElimination sqequalRule Error :productIsType,  Error :functionIsType,  because_Cache promote_hyp independent_isectElimination

Latex:
\mforall{}a,a',b,b',y,y':\mBbbZ{}.    ((a  \msim{}  a')  {}\mRightarrow{}  (b  \msim{}  b')  {}\mRightarrow{}  (y  \msim{}  y')  {}\mRightarrow{}  (GCD(a;b;y)  \mLeftarrow{}{}\mRightarrow{}  GCD(a';b';y')))



Date html generated: 2019_06_20-PM-02_21_24
Last ObjectModification: 2019_01_11-PM-04_06_37

Theory : num_thy_1


Home Index