Nuprl Lemma : assoced_weakening

a,b:ℤ.  supposing b ∈ ℤ


Proof




Definitions occuring in Statement :  assoced: b uimplies: supposing a all: x:A. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  assoced: b all: x:A. B[x] uimplies: supposing a member: t ∈ T and: P ∧ Q uall: [x:A]. B[x] subtype_rel: A ⊆B prop: squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal-wf-base int_subtype_base divides_wf squash_wf true_wf subtype_rel_self iff_weakening_equal divides_reflexivity
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation Error :isect_memberFormation_alt,  cut introduction axiomEquality hypothesis thin rename independent_pairFormation Error :universeIsType,  extract_by_obid sqequalHypSubstitution isectElimination intEquality hypothesisEquality applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed instantiate universeEquality independent_isectElimination productElimination independent_functionElimination dependent_functionElimination because_Cache

Latex:
\mforall{}a,b:\mBbbZ{}.    a  \msim{}  b  supposing  a  =  b



Date html generated: 2019_06_20-PM-02_20_57
Last ObjectModification: 2018_09_26-PM-05_47_57

Theory : num_thy_1


Home Index