Nuprl Lemma : assoced_weakening
∀a,b:ℤ.  a ~ b supposing a = b ∈ ℤ
Proof
Definitions occuring in Statement : 
assoced: a ~ b
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
assoced: a ~ b
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
equal-wf-base, 
int_subtype_base, 
divides_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
divides_reflexivity
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
Error :isect_memberFormation_alt, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
independent_pairFormation, 
Error :universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
intEquality, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache
Latex:
\mforall{}a,b:\mBbbZ{}.    a  \msim{}  b  supposing  a  =  b
Date html generated:
2019_06_20-PM-02_20_57
Last ObjectModification:
2018_09_26-PM-05_47_57
Theory : num_thy_1
Home
Index