Nuprl Lemma : divides_reflexivity

a:ℤ(a a)


Proof




Definitions occuring in Statement :  divides: a all: x:A. B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] divides: a exists: x:A. B[x] member: t ∈ T decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top prop: subtype_rel: A ⊆B
Lemmas referenced :  istype-int decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf itermVar_wf itermMultiply_wf itermConstant_wf int_formula_prop_not_lemma istype-void int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_formula_prop_wf int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut introduction extract_by_obid hypothesis Error :dependent_pairFormation_alt,  natural_numberEquality sqequalHypSubstitution dependent_functionElimination thin because_Cache unionElimination isectElimination independent_isectElimination approximateComputation independent_functionElimination Error :lambdaEquality_alt,  int_eqEquality hypothesisEquality Error :isect_memberEquality_alt,  voidElimination sqequalRule Error :universeIsType,  Error :equalityIsType4,  Error :inhabitedIsType,  applyEquality multiplyEquality

Latex:
\mforall{}a:\mBbbZ{}.  (a  |  a)



Date html generated: 2019_06_20-PM-02_20_04
Last ObjectModification: 2018_10_03-AM-00_35_41

Theory : num_thy_1


Home Index