Nuprl Lemma : atomic_char

a:ℤ(atomic(a) ⇐⇒ {(¬(a 1)) ∧ (∀b:ℤ((b a)  ((b 1) ∨ (b a))))})


Proof




Definitions occuring in Statement :  atomic: atomic(a) assoced: b divides: a guard: {T} all: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q natural_number: $n int:
Definitions unfolded in proof :  or: P ∨ Q so_apply: x[s] so_lambda: λ2x.t[x] rev_implies:  Q subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T false: False not: ¬A implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] atomic: atomic(a) guard: {T} uiff: uiff(P;Q) uimplies: supposing a stable: Stable{P} reducible: reducible(a) exists: x:A. B[x] divides: a int_nzero: -o nequal: a ≠ b ∈  cand: c∧ B top: Top true: True sq_type: SQType(T) satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P)
Lemmas referenced :  or_wf all_wf reducible_wf int_subtype_base equal-wf-base not_wf divides_wf assoced_wf not_over_or decidable__assoced decidable__or stable__from_decidable zero_ann_b nequal_wf istype-void set_subtype_base assoced_functionality_wrt_assoced assoced_weakening multiply_functionality_wrt_assoced mul-commutes one-mul any_divs_zero subtype_base_sq assoced_elim equal-wf-base-T int_formula_prop_wf int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermMultiply_wf itermVar_wf intformeq_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__equal_int int_nzero_properties int_term_value_constant_lemma itermConstant_wf mul_cancel_in_assoced int_entire assoced_inversion
Rules used in proof :  functionEquality lambdaEquality because_Cache baseClosed applyEquality productEquality intEquality natural_numberEquality hypothesisEquality isectElimination extract_by_obid introduction voidElimination independent_functionElimination hypothesis productElimination sqequalHypSubstitution thin cut independent_pairFormation lambdaFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution independent_isectElimination dependent_functionElimination equalitySymmetry hyp_replacement applyLambdaEquality Error :dependent_pairFormation_alt,  Error :dependent_set_memberEquality_alt,  Error :universeIsType,  Error :lambdaFormation_alt,  Error :productIsType,  Error :inhabitedIsType,  Error :functionIsType,  setElimination rename Error :equalityIstype,  baseApply closedConclusion Error :lambdaEquality_alt,  sqequalBase equalityTransitivity multiplyEquality Error :isect_memberEquality_alt,  cumulativity instantiate unionElimination promote_hyp orFunctionality addLevel dependent_pairFormation computeAll voidEquality isect_memberEquality int_eqEquality dependent_set_memberEquality

Latex:
\mforall{}a:\mBbbZ{}.  (atomic(a)  \mLeftarrow{}{}\mRightarrow{}  \{(\mneg{}(a  \msim{}  1))  \mwedge{}  (\mforall{}b:\mBbbZ{}.  ((b  |  a)  {}\mRightarrow{}  ((b  \msim{}  1)  \mvee{}  (b  \msim{}  a))))\})



Date html generated: 2019_06_20-PM-02_22_51
Last ObjectModification: 2019_01_13-AM-09_09_05

Theory : num_thy_1


Home Index