Nuprl Lemma : atomic_char
∀a:ℤ. (atomic(a) 
⇐⇒ {(¬(a ~ 1)) ∧ (∀b:ℤ. ((b | a) 
⇒ ((b ~ 1) ∨ (b ~ a))))})
Proof
Definitions occuring in Statement : 
atomic: atomic(a)
, 
assoced: a ~ b
, 
divides: b | a
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
or: P ∨ Q
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
atomic: atomic(a)
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
stable: Stable{P}
, 
reducible: reducible(a)
, 
exists: ∃x:A. B[x]
, 
divides: b | a
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
cand: A c∧ B
, 
top: Top
, 
true: True
, 
sq_type: SQType(T)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
decidable: Dec(P)
Lemmas referenced : 
or_wf, 
all_wf, 
reducible_wf, 
int_subtype_base, 
equal-wf-base, 
not_wf, 
divides_wf, 
assoced_wf, 
not_over_or, 
decidable__assoced, 
decidable__or, 
stable__from_decidable, 
zero_ann_b, 
nequal_wf, 
istype-void, 
set_subtype_base, 
assoced_functionality_wrt_assoced, 
assoced_weakening, 
multiply_functionality_wrt_assoced, 
mul-commutes, 
one-mul, 
any_divs_zero, 
subtype_base_sq, 
assoced_elim, 
equal-wf-base-T, 
int_formula_prop_wf, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermMultiply_wf, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
int_nzero_properties, 
int_term_value_constant_lemma, 
itermConstant_wf, 
mul_cancel_in_assoced, 
int_entire, 
assoced_inversion
Rules used in proof : 
functionEquality, 
lambdaEquality, 
because_Cache, 
baseClosed, 
applyEquality, 
productEquality, 
intEquality, 
natural_numberEquality, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
voidElimination, 
independent_functionElimination, 
hypothesis, 
productElimination, 
sqequalHypSubstitution, 
thin, 
cut, 
independent_pairFormation, 
lambdaFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution, 
independent_isectElimination, 
dependent_functionElimination, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
Error :dependent_pairFormation_alt, 
Error :dependent_set_memberEquality_alt, 
Error :universeIsType, 
Error :lambdaFormation_alt, 
Error :productIsType, 
Error :inhabitedIsType, 
Error :functionIsType, 
setElimination, 
rename, 
Error :equalityIstype, 
baseApply, 
closedConclusion, 
Error :lambdaEquality_alt, 
sqequalBase, 
equalityTransitivity, 
multiplyEquality, 
Error :isect_memberEquality_alt, 
cumulativity, 
instantiate, 
unionElimination, 
promote_hyp, 
orFunctionality, 
addLevel, 
dependent_pairFormation, 
computeAll, 
voidEquality, 
isect_memberEquality, 
int_eqEquality, 
dependent_set_memberEquality
Latex:
\mforall{}a:\mBbbZ{}.  (atomic(a)  \mLeftarrow{}{}\mRightarrow{}  \{(\mneg{}(a  \msim{}  1))  \mwedge{}  (\mforall{}b:\mBbbZ{}.  ((b  |  a)  {}\mRightarrow{}  ((b  \msim{}  1)  \mvee{}  (b  \msim{}  a))))\})
Date html generated:
2019_06_20-PM-02_22_51
Last ObjectModification:
2019_01_13-AM-09_09_05
Theory : num_thy_1
Home
Index