Nuprl Lemma : decidable__assoced
∀a,b:ℤ.  Dec(a ~ b)
Proof
Definitions occuring in Statement : 
assoced: a ~ b
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
assoced: a ~ b
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
implies: P 
⇒ Q
Lemmas referenced : 
decidable__and2, 
divides_wf, 
decidable__divides_ext, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :isect_memberEquality_alt, 
Error :universeIsType, 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache, 
Error :inhabitedIsType
Latex:
\mforall{}a,b:\mBbbZ{}.    Dec(a  \msim{}  b)
Date html generated:
2019_06_20-PM-02_20_50
Last ObjectModification:
2018_10_03-AM-00_35_48
Theory : num_thy_1
Home
Index