Nuprl Lemma : decidable__divides_ext

a,b:ℤ.  Dec(a b)


Proof




Definitions occuring in Statement :  divides: a decidable: Dec(P) all: x:A. B[x] int:
Definitions unfolded in proof :  member: t ∈ T divide: n ÷ m pi1: fst(t) decidable__divides decidable__equal_int any_divs_zero any: any x decidable_functionality divides_iff_rem_zero decidable__int_equal iff_preserves_decidability uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a
Lemmas referenced :  decidable__divides lifting-strict-int_eq istype-void strict4-decide decidable__equal_int any_divs_zero decidable_functionality divides_iff_rem_zero decidable__int_equal iff_preserves_decidability
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed Error :isect_memberEquality_alt,  voidElimination independent_isectElimination

Latex:
\mforall{}a,b:\mBbbZ{}.    Dec(a  |  b)



Date html generated: 2019_06_20-PM-02_20_35
Last ObjectModification: 2019_03_10-PM-11_03_43

Theory : num_thy_1


Home Index