Nuprl Lemma : divides_iff_rem_zero

a:ℤ. ∀b:ℤ-o.  (b ⇐⇒ (a rem b) 0 ∈ ℤ)


Proof




Definitions occuring in Statement :  divides: a int_nzero: -o all: x:A. B[x] iff: ⇐⇒ Q remainder: rem m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] int_nzero: -o prop: rev_implies:  Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a nat_plus: + nat: squash: T true: True guard: {T} exists: x:A. B[x] div_nrel: Div(a;n;q) lelt: i ≤ j < k divides: a uiff: uiff(P;Q) less_than: a < b cand: c∧ B le: A ≤ B ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False nequal: a ≠ b ∈  int_lower: {...i}
Lemmas referenced :  divides_wf set_subtype_base nequal_wf int_subtype_base int_nzero_wf istype-int nat_plus_wf istype-nat equal_wf squash_wf true_wf istype-universe rem_to_div nat_plus_inc_int_nzero subtype_rel_self iff_weakening_equal div_elim equal-wf-base less_than_wf le_wf mul_cancel_in_le mul_cancel_in_lt add_mono_wrt_eq subtract_wf nat_properties nat_plus_properties decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf intformless_wf itermAdd_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf itermSubtract_wf itermMultiply_wf int_term_value_subtract_lemma int_term_value_mul_lemma decidable__le istype-le int_nzero_properties decidable__lt istype-less_than rem_sym itermMinus_wf int_term_value_minus_lemma minus-one-mul mul-minus-1 one-mul divides_invar_1 rem_2_to_1 minus_functionality_wrt_eq remainder_wfa divides_invar_2 rem_3_to_1 divide_wfa subtract-is-int-iff multiply-is-int-iff false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation cut hypothesis universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality equalityIstype inhabitedIsType sqequalRule baseApply closedConclusion baseClosed applyEquality intEquality lambdaEquality_alt natural_numberEquality independent_isectElimination sqequalBase equalitySymmetry imageElimination equalityTransitivity instantiate universeEquality imageMemberEquality because_Cache productElimination independent_functionElimination dependent_functionElimination hyp_replacement applyLambdaEquality multiplyEquality addEquality unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality Error :memTop,  voidElimination dependent_set_memberEquality_alt minusEquality pointwiseFunctionality promote_hyp

Latex:
\mforall{}a:\mBbbZ{}.  \mforall{}b:\mBbbZ{}\msupminus{}\msupzero{}.    (b  |  a  \mLeftarrow{}{}\mRightarrow{}  (a  rem  b)  =  0)



Date html generated: 2020_05_19-PM-10_01_00
Last ObjectModification: 2019_12_31-AM-11_15_27

Theory : num_thy_1


Home Index