Nuprl Lemma : divides_iff_rem_zero
∀a:ℤ. ∀b:ℤ-o.  (b | a 
⇐⇒ (a rem b) = 0 ∈ ℤ)
Proof
Definitions occuring in Statement : 
divides: b | a
, 
int_nzero: ℤ-o
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
remainder: n rem m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
int_nzero: ℤ-o
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
exists: ∃x:A. B[x]
, 
div_nrel: Div(a;n;q)
, 
lelt: i ≤ j < k
, 
divides: b | a
, 
uiff: uiff(P;Q)
, 
less_than: a < b
, 
cand: A c∧ B
, 
le: A ≤ B
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
nequal: a ≠ b ∈ T 
, 
int_lower: {...i}
Lemmas referenced : 
divides_wf, 
set_subtype_base, 
nequal_wf, 
int_subtype_base, 
int_nzero_wf, 
istype-int, 
nat_plus_wf, 
istype-nat, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
rem_to_div, 
nat_plus_inc_int_nzero, 
subtype_rel_self, 
iff_weakening_equal, 
div_elim, 
equal-wf-base, 
less_than_wf, 
le_wf, 
mul_cancel_in_le, 
mul_cancel_in_lt, 
add_mono_wrt_eq, 
subtract_wf, 
nat_properties, 
nat_plus_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
intformless_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
int_term_value_subtract_lemma, 
int_term_value_mul_lemma, 
decidable__le, 
istype-le, 
int_nzero_properties, 
decidable__lt, 
istype-less_than, 
rem_sym, 
itermMinus_wf, 
int_term_value_minus_lemma, 
minus-one-mul, 
mul-minus-1, 
one-mul, 
divides_invar_1, 
rem_2_to_1, 
minus_functionality_wrt_eq, 
remainder_wfa, 
divides_invar_2, 
rem_3_to_1, 
divide_wfa, 
subtract-is-int-iff, 
multiply-is-int-iff, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
cut, 
hypothesis, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
equalityIstype, 
inhabitedIsType, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
intEquality, 
lambdaEquality_alt, 
natural_numberEquality, 
independent_isectElimination, 
sqequalBase, 
equalitySymmetry, 
imageElimination, 
equalityTransitivity, 
instantiate, 
universeEquality, 
imageMemberEquality, 
because_Cache, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
hyp_replacement, 
applyLambdaEquality, 
multiplyEquality, 
addEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
voidElimination, 
dependent_set_memberEquality_alt, 
minusEquality, 
pointwiseFunctionality, 
promote_hyp
Latex:
\mforall{}a:\mBbbZ{}.  \mforall{}b:\mBbbZ{}\msupminus{}\msupzero{}.    (b  |  a  \mLeftarrow{}{}\mRightarrow{}  (a  rem  b)  =  0)
Date html generated:
2020_05_19-PM-10_01_00
Last ObjectModification:
2019_12_31-AM-11_15_27
Theory : num_thy_1
Home
Index