Nuprl Lemma : divides_invar_2
∀a,b:ℤ.  (a | b ⇐⇒ a | (-b))
Proof
Definitions occuring in Statement : 
divides: b | a, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
minus: -n, 
int: ℤ
Definitions unfolded in proof : 
divides: b | a, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
rev_implies: P ⇐ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
top: Top, 
prop: ℙ, 
squash: ↓T, 
true: True, 
guard: {T}
Lemmas referenced : 
int_subtype_base, 
istype-int, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermMinus_wf, 
itermVar_wf, 
itermMultiply_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_minus_lemma, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_wf, 
equal_wf, 
squash_wf, 
true_wf, 
minus_minus_cancel, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
Error :productIsType, 
Error :inhabitedIsType, 
hypothesisEquality, 
Error :equalityIsType4, 
cut, 
applyEquality, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
multiplyEquality, 
minusEquality, 
because_Cache, 
productElimination, 
thin, 
Error :dependent_pairFormation_alt, 
dependent_functionElimination, 
unionElimination, 
isectElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :universeIsType, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
intEquality, 
imageMemberEquality, 
baseClosed, 
instantiate
Latex:
\mforall{}a,b:\mBbbZ{}.    (a  |  b  \mLeftarrow{}{}\mRightarrow{}  a  |  (-b))
Date html generated:
2019_06_20-PM-02_19_57
Last ObjectModification:
2018_10_03-AM-00_35_39
Theory : num_thy_1
Home
Index