Nuprl Lemma : add_mono_wrt_eq

[a,b,n:ℤ].  uiff(a b ∈ ℤ;(a n) (b n) ∈ ℤ)


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uall: [x:A]. B[x] add: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop:
Lemmas referenced :  equal_wf add_cancel_in_eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation addEquality hypothesis hypothesisEquality lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality sqequalRule productElimination independent_pairEquality isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination

Latex:
\mforall{}[a,b,n:\mBbbZ{}].    uiff(a  =  b;(a  +  n)  =  (b  +  n))



Date html generated: 2016_05_13-PM-03_39_50
Last ObjectModification: 2015_12_26-AM-09_40_46

Theory : arithmetic


Home Index