Nuprl Lemma : add_mono_wrt_eq
∀[a,b,n:ℤ].  uiff(a = b ∈ ℤ;(a + n) = (b + n) ∈ ℤ)
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
add: n + m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
Lemmas referenced : 
equal_wf, 
add_cancel_in_eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
addEquality, 
hypothesis, 
hypothesisEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination
Latex:
\mforall{}[a,b,n:\mBbbZ{}].    uiff(a  =  b;(a  +  n)  =  (b  +  n))
Date html generated:
2016_05_13-PM-03_39_50
Last ObjectModification:
2015_12_26-AM-09_40_46
Theory : arithmetic
Home
Index