Nuprl Lemma : rem_sym

[a:ℤ]. ∀[b:ℤ-o].  ((a rem -b) (a rem b) ∈ ℤ)


Proof




Definitions occuring in Statement :  int_nzero: -o uall: [x:A]. B[x] remainder: rem m minus: -n int: equal: t ∈ T
Definitions unfolded in proof :  or: P ∨ Q decidable: Dec(P) int_nzero: -o all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat_plus: + le: A ≤ B and: P ∧ Q nequal: a ≠ b ∈  iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a less_than': less_than'(a;b) true: True subtract: m subtype_rel: A ⊆B top: Top prop: int_lower: {...i} guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B rev_uimplies: rev_uimplies(P;Q) nat: squash: T less_than: a < b sq_type: SQType(T)
Lemmas referenced :  decidable__le decidable__lt istype-false not-lt-2 not-equal-2 add_functionality_wrt_le zero-add add-zero le-add-cancel condition-implies-le add-commutes istype-void minus-add minus-zero less_than_wf le_wf not-le-2 minus-one-mul add-swap minus-one-mul-top add-associates le-add-cancel2 subtract_wf int_nzero_wf le_reflexive minus-minus add-mul-special one-mul subtype_rel_sets_simple nequal_wf istype-le int_subtype_base div_4_to_1 divide_wfa mul-associates mul-swap mul-commutes equal_wf squash_wf true_wf istype-universe rem_to_div subtype_rel_self iff_weakening_equal istype-int rem_2_to_1 rem_3_to_1 false_wf istype-less_than zero-mul add_functionality_wrt_lt less_than_transitivity1 le_weakening less_than_irreflexivity subtype_base_sq remainder_wfa
Rules used in proof :  inhabitedIsType isectIsTypeImplies axiomEquality isectElimination isect_memberEquality_alt sqequalRule because_Cache unionElimination hypothesis hypothesisEquality rename setElimination natural_numberEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution dependent_set_memberEquality_alt productElimination independent_pairFormation lambdaFormation_alt voidElimination independent_functionElimination independent_isectElimination addEquality minusEquality applyEquality lambdaEquality_alt universeIsType intEquality equalityTransitivity equalitySymmetry multiplyEquality inlFormation_alt inrFormation_alt Error :memTop,  equalityIstype baseClosed sqequalBase imageElimination instantiate universeEquality imageMemberEquality remainderEquality equalityIsType3 voidEquality isect_memberEquality lambdaEquality lambdaFormation cumulativity

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[b:\mBbbZ{}\msupminus{}\msupzero{}].    ((a  rem  -b)  =  (a  rem  b))



Date html generated: 2020_05_19-PM-09_35_34
Last ObjectModification: 2019_12_31-PM-01_07_17

Theory : arithmetic


Home Index