Nuprl Lemma : rem_sym
∀[a:ℤ]. ∀[b:ℤ-o].  ((a rem -b) = (a rem b) ∈ ℤ)
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
remainder: n rem m
, 
minus: -n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
or: P ∨ Q
, 
decidable: Dec(P)
, 
int_nzero: ℤ-o
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
and: P ∧ Q
, 
nequal: a ≠ b ∈ T 
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
less_than': less_than'(a;b)
, 
true: True
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
prop: ℙ
, 
int_lower: {...i}
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
rev_uimplies: rev_uimplies(P;Q)
, 
nat: ℕ
, 
squash: ↓T
, 
less_than: a < b
, 
sq_type: SQType(T)
Lemmas referenced : 
decidable__le, 
decidable__lt, 
istype-false, 
not-lt-2, 
not-equal-2, 
add_functionality_wrt_le, 
zero-add, 
add-zero, 
le-add-cancel, 
condition-implies-le, 
add-commutes, 
istype-void, 
minus-add, 
minus-zero, 
less_than_wf, 
le_wf, 
not-le-2, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-associates, 
le-add-cancel2, 
subtract_wf, 
int_nzero_wf, 
le_reflexive, 
minus-minus, 
add-mul-special, 
one-mul, 
subtype_rel_sets_simple, 
nequal_wf, 
istype-le, 
int_subtype_base, 
div_4_to_1, 
divide_wfa, 
mul-associates, 
mul-swap, 
mul-commutes, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
rem_to_div, 
subtype_rel_self, 
iff_weakening_equal, 
istype-int, 
rem_2_to_1, 
rem_3_to_1, 
false_wf, 
istype-less_than, 
zero-mul, 
add_functionality_wrt_lt, 
less_than_transitivity1, 
le_weakening, 
less_than_irreflexivity, 
subtype_base_sq, 
remainder_wfa
Rules used in proof : 
inhabitedIsType, 
isectIsTypeImplies, 
axiomEquality, 
isectElimination, 
isect_memberEquality_alt, 
sqequalRule, 
because_Cache, 
unionElimination, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
natural_numberEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
dependent_set_memberEquality_alt, 
productElimination, 
independent_pairFormation, 
lambdaFormation_alt, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
addEquality, 
minusEquality, 
applyEquality, 
lambdaEquality_alt, 
universeIsType, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
multiplyEquality, 
inlFormation_alt, 
inrFormation_alt, 
Error :memTop, 
equalityIstype, 
baseClosed, 
sqequalBase, 
imageElimination, 
instantiate, 
universeEquality, 
imageMemberEquality, 
remainderEquality, 
equalityIsType3, 
voidEquality, 
isect_memberEquality, 
lambdaEquality, 
lambdaFormation, 
cumulativity
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[b:\mBbbZ{}\msupminus{}\msupzero{}].    ((a  rem  -b)  =  (a  rem  b))
Date html generated:
2020_05_19-PM-09_35_34
Last ObjectModification:
2019_12_31-PM-01_07_17
Theory : arithmetic
Home
Index