Nuprl Lemma : rem_to_div
∀[a:ℤ]. ∀[n:ℤ-o].  ((a rem n) = (a - (a ÷ n) * n) ∈ ℤ)
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
remainder: n rem m
, 
divide: n ÷ m
, 
multiply: n * m
, 
subtract: n - m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
subtract: n - m
Lemmas referenced : 
div_rem_sum, 
equal_wf, 
minus-one-mul, 
mul-commutes, 
int_nzero_wf, 
add-associates, 
add-commutes, 
minus-one-mul-top, 
add-swap, 
add-mul-special, 
zero-mul, 
zero-add
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
addEquality, 
hypothesis, 
minusEquality, 
multiplyEquality, 
divideEquality, 
setElimination, 
rename, 
lambdaFormation, 
independent_functionElimination, 
voidElimination, 
intEquality, 
natural_numberEquality, 
because_Cache, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
remainderEquality, 
equalitySymmetry, 
axiomEquality
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbZ{}\msupminus{}\msupzero{}].    ((a  rem  n)  =  (a  -  (a  \mdiv{}  n)  *  n))
Date html generated:
2016_05_13-PM-03_35_22
Last ObjectModification:
2015_12_26-AM-09_43_10
Theory : arithmetic
Home
Index