Nuprl Lemma : rem_to_div

[a:ℤ]. ∀[n:ℤ-o].  ((a rem n) (a (a ÷ n) n) ∈ ℤ)


Proof




Definitions occuring in Statement :  int_nzero: -o uall: [x:A]. B[x] remainder: rem m divide: n ÷ m multiply: m subtract: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_nzero: -o nequal: a ≠ b ∈  not: ¬A implies:  Q false: False prop: subtype_rel: A ⊆B top: Top subtract: m
Lemmas referenced :  div_rem_sum equal_wf minus-one-mul mul-commutes int_nzero_wf add-associates add-commutes minus-one-mul-top add-swap add-mul-special zero-mul zero-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality addEquality hypothesis minusEquality multiplyEquality divideEquality setElimination rename lambdaFormation independent_functionElimination voidElimination intEquality natural_numberEquality because_Cache sqequalRule applyEquality lambdaEquality isect_memberEquality voidEquality remainderEquality equalitySymmetry axiomEquality

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbZ{}\msupminus{}\msupzero{}].    ((a  rem  n)  =  (a  -  (a  \mdiv{}  n)  *  n))



Date html generated: 2016_05_13-PM-03_35_22
Last ObjectModification: 2015_12_26-AM-09_43_10

Theory : arithmetic


Home Index