Nuprl Lemma : rem_2_to_1

[a:{...0}]. ∀[n:ℕ+].  ((a rem n) (-(-a rem n)) ∈ ℤ)


Proof




Definitions occuring in Statement :  int_lower: {...i} nat_plus: + uall: [x:A]. B[x] remainder: rem m minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_lower: {...i} subtype_rel: A ⊆B nat_plus: + int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a prop: all: x:A. B[x] implies:  Q nequal: a ≠ b ∈  not: ¬A false: False guard: {T} true: True squash: T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q subtract: m top: Top
Lemmas referenced :  nat_plus_wf int_lower_wf subtype_rel_sets less_than_wf nequal_wf less_than_transitivity1 le_weakening less_than_irreflexivity equal_wf equal-wf-base int_subtype_base squash_wf true_wf rem_to_div iff_weakening_equal subtract_wf minus-one-mul mul-associates minus-one-mul-top mul-commutes one-mul minus-add minus-minus div_2_to_1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache natural_numberEquality intEquality setElimination rename applyEquality lambdaEquality independent_isectElimination setEquality lambdaFormation dependent_functionElimination independent_functionElimination voidElimination baseClosed minusEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality productElimination multiplyEquality divideEquality voidEquality addEquality

Latex:
\mforall{}[a:\{...0\}].  \mforall{}[n:\mBbbN{}\msupplus{}].    ((a  rem  n)  =  (-(-a  rem  n)))



Date html generated: 2017_04_14-AM-07_18_22
Last ObjectModification: 2017_02_27-PM-02_52_32

Theory : arithmetic


Home Index