Nuprl Lemma : rem_2_to_1
∀[a:{...0}]. ∀[n:ℕ+].  ((a rem n) = (-(-a rem n)) ∈ ℤ)
Proof
Definitions occuring in Statement : 
int_lower: {...i}
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
remainder: n rem m
, 
minus: -n
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_lower: {...i}
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
int_nzero: ℤ-o
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
false: False
, 
guard: {T}
, 
true: True
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
, 
top: Top
Lemmas referenced : 
nat_plus_wf, 
int_lower_wf, 
subtype_rel_sets, 
less_than_wf, 
nequal_wf, 
less_than_transitivity1, 
le_weakening, 
less_than_irreflexivity, 
equal_wf, 
equal-wf-base, 
int_subtype_base, 
squash_wf, 
true_wf, 
rem_to_div, 
iff_weakening_equal, 
subtract_wf, 
minus-one-mul, 
mul-associates, 
minus-one-mul-top, 
mul-commutes, 
one-mul, 
minus-add, 
minus-minus, 
div_2_to_1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
because_Cache, 
natural_numberEquality, 
intEquality, 
setElimination, 
rename, 
applyEquality, 
lambdaEquality, 
independent_isectElimination, 
setEquality, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination, 
voidElimination, 
baseClosed, 
minusEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
productElimination, 
multiplyEquality, 
divideEquality, 
voidEquality, 
addEquality
Latex:
\mforall{}[a:\{...0\}].  \mforall{}[n:\mBbbN{}\msupplus{}].    ((a  rem  n)  =  (-(-a  rem  n)))
Date html generated:
2017_04_14-AM-07_18_22
Last ObjectModification:
2017_02_27-PM-02_52_32
Theory : arithmetic
Home
Index