Nuprl Lemma : decidable__divides
∀a,b:ℤ.  Dec(a | b)
Proof
Definitions occuring in Statement : 
divides: b | a
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
false: False
, 
nequal: a ≠ b ∈ T 
, 
subtype_rel: A ⊆r B
, 
int_nzero: ℤ-o
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
decidable__equal_int, 
istype-int, 
decidable_wf, 
divides_wf, 
any_divs_zero, 
not_wf, 
zero_divs_only_zero, 
decidable_functionality, 
equal-wf-base, 
int_subtype_base, 
divides_iff_rem_zero, 
nequal_wf, 
decidable__int_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
unionElimination, 
Error :inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
isectElimination, 
Error :inlFormation_alt, 
Error :universeIsType, 
Error :inrFormation_alt, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
intEquality, 
remainderEquality, 
applyEquality, 
sqequalRule, 
Error :dependent_set_memberEquality_alt, 
productElimination, 
because_Cache
Latex:
\mforall{}a,b:\mBbbZ{}.    Dec(a  |  b)
Date html generated:
2019_06_20-PM-02_20_33
Last ObjectModification:
2018_10_03-AM-00_35_46
Theory : num_thy_1
Home
Index