Nuprl Lemma : decidable__divides

a,b:ℤ.  Dec(a b)


Proof




Definitions occuring in Statement :  divides: a decidable: Dec(P) all: x:A. B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T decidable: Dec(P) or: P ∨ Q prop: uall: [x:A]. B[x] not: ¬A implies:  Q uimplies: supposing a false: False nequal: a ≠ b ∈  subtype_rel: A ⊆B int_nzero: -o iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  decidable__equal_int istype-int decidable_wf divides_wf any_divs_zero not_wf zero_divs_only_zero decidable_functionality equal-wf-base int_subtype_base divides_iff_rem_zero nequal_wf decidable__int_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality natural_numberEquality hypothesis unionElimination Error :inhabitedIsType,  equalityTransitivity equalitySymmetry hyp_replacement applyLambdaEquality isectElimination Error :inlFormation_alt,  Error :universeIsType,  Error :inrFormation_alt,  independent_isectElimination independent_functionElimination voidElimination intEquality remainderEquality applyEquality sqequalRule Error :dependent_set_memberEquality_alt,  productElimination because_Cache

Latex:
\mforall{}a,b:\mBbbZ{}.    Dec(a  |  b)



Date html generated: 2019_06_20-PM-02_20_33
Last ObjectModification: 2018_10_03-AM-00_35_46

Theory : num_thy_1


Home Index