Nuprl Lemma : mul_cancel_in_assoced
∀a,b:ℤ. ∀n:ℤ-o.  (((n * a) ~ (n * b)) ⇒ (a ~ b))
Proof
Definitions occuring in Statement : 
assoced: a ~ b, 
int_nzero: ℤ-o, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
multiply: n * m, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
int_nzero: ℤ-o, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
or: P ∨ Q, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
nequal: a ≠ b ∈ T , 
decidable: Dec(P), 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top
Lemmas referenced : 
assoced_elim, 
assoced_wf, 
int_nzero_wf, 
istype-int, 
mul_cancel_in_eq, 
int_subtype_base, 
int_nzero_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermMinus_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_term_value_minus_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
multiplyEquality, 
setElimination, 
rename, 
because_Cache, 
Error :universeIsType, 
isectElimination, 
Error :inhabitedIsType, 
unionElimination, 
Error :inlFormation_alt, 
independent_isectElimination, 
Error :equalityIsType4, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
sqequalRule, 
minusEquality, 
Error :inrFormation_alt, 
natural_numberEquality, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation
Latex:
\mforall{}a,b:\mBbbZ{}.  \mforall{}n:\mBbbZ{}\msupminus{}\msupzero{}.    (((n  *  a)  \msim{}  (n  *  b))  {}\mRightarrow{}  (a  \msim{}  b))
Date html generated:
2019_06_20-PM-02_21_08
Last ObjectModification:
2018_10_03-AM-10_23_39
Theory : num_thy_1
Home
Index